The role of the N-terminal caspase cleavage site in the nucleoprotein of influenza A virus in vitro and in vivo

2007 ◽  
Vol 153 (3) ◽  
pp. 427-434 ◽  
Author(s):  
A. S. Lipatov ◽  
H.-L. Yen ◽  
R. Salomon ◽  
H. Ozaki ◽  
E. Hoffmann ◽  
...  
2019 ◽  
Vol 50 (1) ◽  
Author(s):  
Guihong Yang ◽  
Huipeng Huang ◽  
Mengyao Tang ◽  
Zifeng Cai ◽  
Cuiqin Huang ◽  
...  

Abstract The peptide neuromedin B (NMB) and its receptor (NMBR) represent a system (NMB/NMBR) of neuromodulation. Here, it was demonstrated that the expression of NMBR in cells or murine lung tissues was clearly upregulated in response to H1N1/PR8 influenza A virus infection. Furthermore, the in vitro and in vivo activities of NMB/NMBR during PR8 infection were investigated. It was observed that A549 cells lacking endogenous NMBR were more susceptible to virus infection than control cells, as evidenced by the increased virus production in the cells. Interestingly, a significant decrease in IFN-α and increased IL-6 expression were observed in these cells. The role of this system in innate immunity against PR8 infection was probed by treating mice with NMB. The NMB-treated mice were less susceptible to virus challenge, as evidenced by increased survival, increased body weight, and decreased viral NP expression compared with the control animals. Additionally, the results showed that exogenous NMB not only enhanced IFN-α expression but also appeared to inhibit the expression of NP and IL-6 in PR8-infected cells and animals. As expected, opposing effects were observed in the NMBR antagonist-treated cells and mice, which further confirmed the effects of NMB. Together, these data suggest that NMB/NMBR may be an important component of the host defence against influenza A virus infection. Thus, these proteins may serve as promising candidates for the development of novel antiviral drugs.


2014 ◽  
Vol 5 ◽  
Author(s):  
Emanuel Haasbach ◽  
Carmen Hartmayer ◽  
Alice Hettler ◽  
Alicja Sarnecka ◽  
Ulrich Wulle ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1630 ◽  
Author(s):  
Junu A. George ◽  
Shaikha H. AlShamsi ◽  
Maryam H. Alhammadi ◽  
Ahmed R. Alsuwaidi

Influenza A virus (IAV) and respiratory syncytial virus (RSV) are leading causes of childhood infections. RSV and influenza are competitive in vitro. In this study, the in vivo effects of RSV and IAV co-infection were investigated. Mice were intranasally inoculated with RSV, with IAV, or with both viruses (RSV+IAV and IAV+RSV) administered sequentially, 24 h apart. On days 3 and 7 post-infection, lung tissues were processed for viral loads and immune cell populations. Lung functions were also evaluated. Mortality was observed only in the IAV+RSV group (50% of mice did not survive beyond 7 days). On day 3, the viral loads in single-infected and co-infected mice were not significantly different. However, on day 7, the IAV titer was much higher in the IAV+RSV group, and the RSV viral load was reduced. CD4 T cells were reduced in all groups on day 7 except in single-infected mice. CD8 T cells were higher in all experimental groups except the RSV-alone group. Increased airway resistance and reduced thoracic compliance were demonstrated in both co-infected groups. This model indicates that, among all the infection types we studied, infection with IAV followed by RSV is associated with the highest IAV viral loads and the most morbidity and mortality.


2014 ◽  
Vol 455 (1) ◽  
pp. 80-83 ◽  
Author(s):  
P. G. Deryabin ◽  
G. A. Galegov ◽  
I. D. Konstantinova ◽  
I. S. Muzyka ◽  
A. I. Miroshnikov ◽  
...  

2016 ◽  
Vol 185 ◽  
pp. 327-340 ◽  
Author(s):  
Amin Haghani ◽  
Parvaneh Mehrbod ◽  
Nikoo Safi ◽  
Nur Ain Aminuddin ◽  
Azadeh Bahadoran ◽  
...  

2020 ◽  
Author(s):  
Mengwei Li ◽  
Yuxu Wang ◽  
Jing Jin ◽  
Jie Dou ◽  
Qinglong Guo ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1171
Author(s):  
Yaron Drori ◽  
Jasmine Jacob-Hirsch ◽  
Rakefet Pando ◽  
Aharona Glatman-Freedman ◽  
Nehemya Friedman ◽  
...  

Influenza viruses and respiratory syncytial virus (RSV) are respiratory viruses that primarily circulate worldwide during the autumn and winter seasons. Seasonal surveillance has shown that RSV infection generally precedes influenza. However, in the last four winter seasons (2016–2020) an overlap of the morbidity peaks of both viruses was observed in Israel, and was paralleled by significantly lower RSV infection rates. To investigate whether the influenza A virus inhibits RSV, human cervical carcinoma (HEp2) cells or mice were co-infected with influenza A and RSV. Influenza A inhibited RSV growth, both in vitro and in vivo. Mass spectrometry analysis of mouse lungs infected with influenza A identified a two-wave pattern of protein expression upregulation, which included members of the interferon-induced protein with the tetratricopeptide (IFITs) family. Interestingly, in the second wave, influenza A viruses were no longer detectable in mouse lungs. In addition, knockdown and overexpression of IFITs in HEp2 cells affected RSV multiplicity. In conclusion, influenza A infection inhibits RSV infectivity via upregulation of IFIT proteins in a two-wave modality. Understanding the immune system involvement in the interaction between influenza A and RSV viruses will contribute to the development of future treatment strategies against these viruses.


2019 ◽  
Vol 61 (3) ◽  
pp. 395-398
Author(s):  
Christin Peteranderl ◽  
Irina Kuznetsova ◽  
Jessica Schulze ◽  
Martin Hardt ◽  
Emilia Lecuona ◽  
...  

2001 ◽  
Vol 52 (1) ◽  
pp. 43-53 ◽  
Author(s):  
A Horváth ◽  
I Andersen ◽  
K Junker ◽  
B Lyck Fogh-Schultz ◽  
E Holm Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document