caspase cleavage site
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 2)

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Leslie Duplaquet ◽  
Catherine Leroy ◽  
Audrey Vinchent ◽  
Sonia Paget ◽  
Jonathan Lefebvre ◽  
...  

Control of cell death/survival balance is an important feature to maintain tissue homeostasis. Dependence receptors are able to induce either survival or cell death in presence or absence of their ligand, respectively. However, their precise mechanism of action and their physiological importance are still elusive for most of them including the MET receptor. We evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the mitochondria-associated membrane region. This fragment triggers a calcium transfer from endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence receptors’ control of cell survival/death balance, which may offer new clues for the pathophysiology of epithelial structures.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
J. Fuller ◽  
R. A. Surtees ◽  
G. S. Slack ◽  
J. Mankouri ◽  
R. Hewson ◽  
...  

ABSTRACT The Nairoviridae family of the Bunyavirales order comprises tick-borne, trisegmented, negative-strand RNA viruses, with several members being associated with serious or fatal diseases in humans and animals. A notable member is Crimean-Congo hemorrhagic fever virus (CCHFV), which is the most widely distributed tick-borne pathogen and is associated with devastating human disease, with case fatality rates averaging 30%. Hazara virus (HAZV) is closely related to CCHFV, sharing the same serogroup and many structural, biochemical, and cellular properties. To improve understanding of HAZV and nairovirus multiplication cycles, we developed, for the first time, a rescue system permitting efficient recovery of infectious HAZV from cDNA. This system now allows reverse genetic analysis of nairoviruses without the need for high-level biosafety containment, as is required for CCHFV. We used this system to test the importance of a DQVD caspase cleavage site exposed on the apex of the HAZV nucleocapsid protein arm domain that is cleaved during HAZV infection, for which the equivalent DEVD sequence was recently shown to be important for CCHFV growth in tick but not mammalian cells. Infectious HAZV bearing an uncleavable DQVE sequence was rescued and exhibited growth parameters equivalent to those of wild-type virus in both mammalian and tick cells, showing this site was dispensable for virus multiplication. In contrast, substitution of the DQVD motif with the similarly uncleavable AQVA sequence could not be rescued despite repeated efforts. Together, these results highlight the importance of this caspase cleavage site in the HAZV life cycle but reveal the DQVD sequence performs a critical role aside from caspase cleavage. IMPORTANCE HAZV is classified within the Nairoviridae family with CCHFV, which is one of the most lethal human pathogens in existence, requiring the highest biosafety level (BSL) containment (BSL4). In contrast, HAZV is not associated with human disease and thus can be studied using less-restrictive BSL2 protocols. Here, we report a system that is able to rescue HAZV from cDNAs, thus permitting reverse genetic interrogation of the HAZV replication cycle. We used this system to examine the role of a caspase cleavage site, DQVD, within the HAZV nucleocapsid protein that is also conserved in CCHFV. By engineering mutant viruses, we showed caspase cleavage at this site was not required for productive infection and this sequence performs a critical role in the virus life cycle aside from caspase cleavage. This system will accelerate nairovirus research due to its efficiency and utility under amenable BSL2 protocols.


2018 ◽  
Vol 33 (3) ◽  
pp. 3190-3197 ◽  
Author(s):  
Dale D. O. Martin ◽  
Mandi E. Schmidt ◽  
Yen T. Nguyen ◽  
Nikola Lazic ◽  
Michael R. Hayden

2017 ◽  
Author(s):  
D.D.O. Martin ◽  
M. E. Schmidt ◽  
Y. T. Nguyen ◽  
N. Lazic ◽  
M. R. Hayden

ABSTRACTHuntington disease (HD) is a progressive neurodegenerative disease that initially affects the striatum leading to changes in behavior and loss of motor coordination. It is caused by an expansion in the polyglutamine repeat at the N-terminus of huntingtin (HTT) that leads to aggregation of mutant HTT. The loss of wildtype function, in combination with the toxic gain of function mutation, initiates various cell death pathways. Wildtype and mutant HTT are regulated by different post-translational modifications that can positively or negatively regulate their function or toxicity. In particular, we have previously shown that caspase cleavage of mutant HTT at amino acid position aspartate 586 (D586) by caspase-6 is critical for the pathogenesis of the disease in an HD mouse model. Herein, we describe the identification of a new caspase cleavage site at position D572 that is mediated by caspase-1. Inhibition of caspase-1 also inhibits cleavage at D586 through inhibition of caspase-6. Inhibition of caspase cleavage at D572 significantly decreases mutant HTT aggregation and significantly increased the turnover of soluble mutant HTT. This suggests that caspase-1 may be a viable target to inhibit caspase cleavage of mutant HTT at both D572 and D586 to promote mutant HTT clearance.


2014 ◽  
Vol 207 (2) ◽  
pp. 253-268 ◽  
Author(s):  
Nilay Nandi ◽  
Lauren K. Tyra ◽  
Drew Stenesen ◽  
Helmut Krämer

How cellular stresses up-regulate autophagy is not fully understood. One potential regulator is the Drosophila melanogaster protein Acinus (Acn), which is necessary for autophagy induction and triggers excess autophagy when overexpressed. We show that cell type–specific regulation of Acn depends on proteolysis by the caspase Dcp-1. Basal Dcp-1 activity in developing photoreceptors is sufficient for this cleavage without a need for apoptosis to elevate caspase activity. On the other hand, Acn was stabilized by loss of Dcp-1 function or by the presence of a mutation in Acn that eliminates its conserved caspase cleavage site. Acn stability also was regulated by AKT1-mediated phosphorylation. Flies that expressed stabilized forms of Acn, either the phosphomimetic AcnS641,731D or the caspase-resistant AcnD527A, exhibited enhanced basal autophagy. Physiologically, these flies showed improvements in processes known to be autophagy dependent, including increased starvation resistance, reduced Huntingtin-induced neurodegeneration, and prolonged life span. These data indicate that AKT1 and caspase-dependent regulation of Acn stability adjusts basal autophagy levels.


2007 ◽  
Vol 153 (3) ◽  
pp. 427-434 ◽  
Author(s):  
A. S. Lipatov ◽  
H.-L. Yen ◽  
R. Salomon ◽  
H. Ozaki ◽  
E. Hoffmann ◽  
...  

2003 ◽  
Vol 372 (1) ◽  
pp. 137-143 ◽  
Author(s):  
József TÖZSÉR ◽  
Péter BAGOSSI ◽  
Gábor ZAHUCZKY ◽  
Suzanne I. SPECHT ◽  
Eva MAJEROVA ◽  
...  

Caspases are important mediators of apoptotic cell death. Several cellular protein substrates of caspases contain potential phosphorylation site(s) at the cleavage-site region, and some of these sites have been verified to be phosphorylated. Since phosphorylation may affect substantially the substrate susceptibility towards proteolysis, phosphorylated, non-phosphorylated and substituted oligopeptides representing such cleavage sites were studied as substrates of apoptotic caspases 3, 7 and 8. Peptides containing phosphorylated serine residues at P4 and P1′ positions were found to be substantially less susceptible towards proteolysis as compared with the serine-containing analogues, while phosphoserine at P3 did not have a substantial effect. P1 serine as well as P1-phosphorylated, serine-containing analogues of an oligopeptide representing the poly(ADP-ribose) polymerase cleavage site of caspase-3 were not hydrolysed by any of these enzymes, whereas the P1 aspartate-containing peptides were efficiently hydrolysed. These findings were interpreted with the aid of molecular modelling. Our results suggest that cleavage-site phosphorylation in certain positions could be disadvantageous or detrimental with respect to cleavability by caspases. Cleavage-site phosphorylation may therefore provide a regulatory mechanism to protect substrates from caspase-mediated degradation.


2003 ◽  
Vol 22 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Gordana Kocic ◽  
Dusica Pavlovic ◽  
Vidosava Djordjevic ◽  
Gordana Bjelakovic ◽  
Ivana Stojanovic

Apoptosis is a form of cell death utilized physiologically to maintain tissue homeostasis, as well as in response to various toxic and inflammatory stimuli or anticancer drugs. Since the process of apoptosis is followed by phagocytosis, the cleavage of DNA to low molecular weight material may serve as a protective function limiting the probability of gene transfer to the nuclei of viable neighbor cells. Many different endonucleases have been proposed as candidates responsible for the internucleosomal cleavage of the genomic DNA observed during apoptosis. The main effect was attributed to the alkaline DNase I (Mg 2+ and caspase-dependent) and acid-DNase II. It was also documented that both of them contain a potential protease (caspase) cleavage site, but they can be also activated upon the influence of other "fragmentation factors", including nitric oxide (NO). The complexity of biological effects induced by NO may be the result of the cell redox state changes, due to its potential interaction with superoxide. The apoptotic effect of both, nitric oxide (NO) and peroxynitrite (ONOO) are dose-dependent and cell-specific may point out the existence of possible "inducible" form of endonuclease.


Sign in / Sign up

Export Citation Format

Share Document