Host range conversion of murine leukemia virus resulting from recombination with endogenous virus

1997 ◽  
Vol 142 (1) ◽  
pp. 139-149 ◽  
Author(s):  
A. Kawana ◽  
A. Iwamoto ◽  
T. Odawara ◽  
H. Yoshikura
2001 ◽  
Vol 75 (10) ◽  
pp. 4490-4498 ◽  
Author(s):  
Vladimir Prassolov ◽  
Sibyll Hein ◽  
Marion Ziegler ◽  
Dmitry Ivanov ◽  
Carsten Münk ◽  
...  

ABSTRACT Murine leukemia virus (MuLV) M813 was originally isolated from the Southeast Asian rodent Mus cervicolor. As with the ecotropic MuLVs derived from Mus musculus, its host range is limited to rodent cells. Earlier studies have mapped its receptor to chromosome 2, but it has not been established whether M813 shares a common receptor with any other MuLVs. In this study, we have performed interference assays with M813 and viruses from four interference groups of MuLV. The infection efficiency of M813 was not compromised in cells expressing any one of the other MuLVs, demonstrating that M813 must use a distinct receptor for cell entry. The entire M813 env coding region was molecularly cloned. Sequence analysis revealed high similarity with other MuLVs but with a unique receptor-binding domain. Substitution of M813env sequences in Moloney MuLV resulted in a replication-competent virus with a host range and interference profile similar to those of the biological clone M813. M813 thus defines a novel receptor interference group of type C MuLVs.


1998 ◽  
Vol 72 (6) ◽  
pp. 5296-5302 ◽  
Author(s):  
Martin Spiegel ◽  
Michael Bitzer ◽  
Andrea Schenk ◽  
Heidi Rossmann ◽  
Wolfgang J. Neubert ◽  
...  

ABSTRACT Mixed infection of cells with both Moloney murine leukemia virus (MoMLV) and related or heterologous viruses produces progeny pseudotype virions bearing the MoMLV genome encapsulated by the envelope of the other virus. In this study, pseudotype formation between MoMLV and the prototype parainfluenza virus Sendai virus (SV) was investigated. We report for the first time that SV infection of MoMLV producer cells results in the formation of MoMLV(SV) pseudotypes, which display a largely extended host range compared to that of MoMLV particles. This could be associated with SV hemagglutinin-neuraminidase (SV-HN) glycoprotein incorporation into MoMLV envelopes. In contrast, solitary incorporation of the other SV glycoprotein, SV fusion protein (SV-F), resulted in a distinct and narrow extension of the MoMLV host range to asialoglycoprotein receptor (ASGP-R)-positive cells (e.g., cultured human hepatoma cells). Since stably ASGP-R cDNA-transfected MDCK cells, but not parental ASGP-R-negative MDCK cells, were found to be transduced by MoMLV(SV-F) pseudotypes and transduction of ASGP-R-expressing cells was found to be inhibited by ASGP-R antiserum, a direct proof for the ASGP-R-restricted tropism of MoMLV(SV-F) pseudotypes was provided. Cultivation of ASGP-R-positive HepG2 hepatoma cells on Transwell-COL membranes led to a significant enhancement of MoMLV(SV-F) titers in subsequent flowthrough transduction experiments, thereby suggesting the importance of ASGP-R accessibility at the basolateral domain for MoMLV(SV-F) pseudotype transduction. The availability of such ASGP-R-restricted MoMLV(SV-F)-pseudotyped vectors opens up new perspectives for future liver-restricted therapeutic gene transfer applications.


2004 ◽  
Vol 78 (22) ◽  
pp. 12189-12197 ◽  
Author(s):  
Yong Tae Jung ◽  
Tiyun Wu ◽  
Christine A. Kozak

ABSTRACT A variant ecotropic Friend murine leukemia virus, F-S MLV, is capable of inducing the formation of large multinucleated syncytia in Mus dunni cells. This cytopathicity resembles that of Spl574 MLV, a novel variant recently isolated from the spleen of a Mus spicilegus mouse neonatally inoculated with Moloney MLV. F-S MLV is an N-tropic Friend MLV that also has the unusual ability to infect hamster cells, which are normally resistant to mouse ecotropic MLVs. Syncytium induction by both F-S MLV and Spl574 is accompanied by the accumulation of large amounts of unintegrated viral DNA, a hallmark of pathogenic retroviruses, but not previously reported for mouse ecotropic gammaretroviruses. Sequencing and site-specific mutagenesis determined that the syncytium-inducing phenotype of F-S MLV can be attributed to a single amino acid substitution (S84A) in the VRA region of the viral env gene. This site corresponds to that of the single substitution previously shown to be responsible for the cytopathicity of Spl574, S82F. The S84A substitution in F-S MLV also contributes to the ability of this virus to infect hamster cells, but Spl574 MLV is unable to infect hamster cells. Because this serine residue is one of the critical amino acids that form the CAT-1 receptor binding site, and because M. dunni and hamster cells have variant CAT-1 receptors, these results suggest that syncytium formation as well as altered host range may be a consequence of altered interaction between virus and receptor.


2003 ◽  
Vol 77 (9) ◽  
pp. 5065-5072 ◽  
Author(s):  
Yong Tae Jung ◽  
Christine A. Kozak

ABSTRACT Mus spicilegus is an Eastern European wild mouse species that has previously been reported to harbor an unusual infectious ecotropic murine leukemia virus (MLV) and proviral envelope genes of a novel MLV subgroup. In the present study, M. spicilegus neonates were inoculated with Moloney ecotropic MLV (MoMLV). All 17 inoculated mice produced infectious ecotropic virus after 8 to 14 weeks, and two unusual phenotypes distinguished the isolates from MoMLV. First, most of the M. spicilegus isolates grew to equal titers on M. dunni and SC-1 cells, although MoMLV does not efficiently infect M. dunni cells. The deduced amino acid sequence of a representative clone differed from MoMLV by insertion of two serine residues within the VRA of SUenv. Modification of a molecular clone of MoMLV by the addition of these serines produced a virus that grows to high titer in M. dunni cells, establishing a role for these two serine residues in host range. A second unusual phenotype was found in only one of the M. spicilegus isolates, Spl574. Spl574 produces large syncytia of multinucleated giant cells in M. dunni cells, but its replication is restricted in other mouse cell lines. Sequencing and mutagenesis demonstrated that syncytium formation could be attributed to a single amino acid substitution within VRA, S82F. Thus, viruses with altered growth properties are selected during growth in M. spicilegus. The mutations associated with the host range and syncytium-inducing variants map to a key region of VRA known to govern interactions with the cell surface receptor, suggesting that the associated phenotypes may result from altered interactions with the unusual ecotropic virus mCAT1 receptor carried by M. dunni.


1998 ◽  
Vol 72 (9) ◽  
pp. 7685-7687 ◽  
Author(s):  
Jörg G. Baumann ◽  
Walter H. Günzburg ◽  
Brian Salmons

ABSTRACT The feline kidney cell line CrFK is used extensively for viral infectivity assays and for study of the biology of various retroviruses and derived vectors. We demonstrate the production of an endogenous, RD114-like, infectious retrovirus from CrFK cells. This virus also is shown to efficiently package Moloney murine leukemia virus vectors.


1972 ◽  
Vol 136 (5) ◽  
pp. 1286-1301 ◽  
Author(s):  
Wallace P. Rowe ◽  
Janet W. Hartley

The transmission of murine leukemia virus (MLV) to hybrids between AKR and Fv-1b mice was studied in order to evaluate the effect of the Fv-1 gene on endogenous MLV infection and to attempt to determine if the genetic loci contributed by AKR carry viral genetic determinants. Fv-1 was shown to have a marked suppressive effect on time of appearance of detectable infectious virus and on the titers attained in vivo, but did not affect the ability of the cells to produce virus in vitro after induction with 5-iododeoxyuridine. The host range type of the virus detected in the hybrid mice was almost always of the type carried by AKR, although the low-virus Fv-1b parents carry the genome of a different host range type. This finding provides strong, but not conclusive, evidence that the virus-inducing loci of AKR contain MLV genetic determinants.


Sign in / Sign up

Export Citation Format

Share Document