receptor interference
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 0)

H-INDEX

10
(FIVE YEARS 0)

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Laura González-Méndez ◽  
Irene Seijo-Barandiarán ◽  
Isabel Guerrero

Morphogens regulate tissue patterning through their distribution in concentration gradients. Emerging research establishes a role for specialized signalling filopodia, or cytonemes, in morphogen dispersion and signalling. Previously we demonstrated that Hedgehog (Hh) morphogen is transported via vesicles along cytonemes emanating from signal-producing cells to form a gradient in Drosophila epithelia. However, the mechanisms for signal reception and transfer are still undefined. Here, we demonstrate that cytonemes protruding from Hh-receiving cells contribute to Hh gradient formation. The canonical Hh receptor Patched is localized in these cellular protrusions and Hh reception takes place in membrane contact sites between Hh-sending and Hh-receiving cytonemes. These two sets of cytonemes have similar dynamics and both fall in two different dynamic behaviours. Furthermore, both the Hh co-receptor Interference hedgehog (Ihog) and the glypicans are critical for this cell-cell cytoneme mediated interaction. These findings suggest that the described contact sites might facilitate morphogen presentation and reception.


2015 ◽  
Vol 90 (5) ◽  
pp. 2294-2305 ◽  
Author(s):  
Eric P. Schultz ◽  
Jean-Marc Lanchy ◽  
Erin E. Ellerbeck ◽  
Brent J. Ryckman

ABSTRACTThe core, conserved function of the herpesvirus gH/gL is to promote gB-mediated membrane fusion during entry, although the mechanism is poorly understood. The human cytomegalovirus (HCMV) gH/gL can exist as either the gH/gL/gO trimer or the gH/gL/UL128/UL130/UL131 (gH/gL/UL128-131) pentamer. One model suggests that gH/gL/gO provides the core fusion role during entry into all cells within the broad tropism of HCMV, whereas gH/gL/UL128-131 acts at an earlier stage, by a distinct receptor-binding mechanism to enhance infection of select cell types, such as epithelial cells, endothelial cells, and monocytes/macrophages. To further study the distinct functions of these complexes, mutants with individual charged cluster-to-alanine (CCTA) mutations of gH and gL were combined to generate a library of 80 mutant gH/gL heterodimers. The majority of the mutant gH/gL complexes were unable to facilitate gB-mediated membrane fusion in transient-expression cell-cell fusion experiments. In contrast, these mutants supported the formation of gH/gL/UL128-131 complexes that could block HCMV infection in receptor interference experiments. These results suggest that receptor interactions with gH/gL/UL128-131 involve surfaces contained on the UL128-131 proteins but not on gH/gL. gH/gL/UL128-131 receptor interference could be blocked with anti-gH antibodies, suggesting that interference is a cell surface phenomenon and that anti-gH antibodies can block gH/gL/UL128-131 in a manner that is distinct from that for gH/gL/gO.IMPORTANCEInterest in the gH/gL complexes of HCMV (especially gH/gL/UL128-131) as vaccine targets has far outpaced our understanding of the mechanism by which they facilitate entry and contribute to broad cellular tropism. For Epstein-Barr virus (EBV), gH/gL and gH/gL/gp42 are both capable of promoting gB fusion for entry into epithelial cells and B cells, respectively. In contrast, HCMV gH/gL/gO appears to be the sole fusion cofactor that promotes gB fusion activity, whereas gH/gL/UL128-131 expands cell tropism through a distinct yet unknown mechanism. This study suggests that the surfaces of HCMV gH/gL are critical for promoting gB fusion but are dispensable for gH/gL/UL128-131 receptor interaction. This underscores the importance of gH/gL/gO in HCMV entry into all cell types and reaffirms the complex as a candidate target for vaccine development. The two functionally distinct forms of gH/gL present in HCMV make for a useful model with which to study the fundamental mechanisms by which herpesvirus gH/gL regulates gB fusion.


Retrovirology ◽  
2010 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Shervin Bahrami ◽  
Ditte Ejegod ◽  
Karina Sørensen ◽  
Finn Pedersen

2003 ◽  
Vol 77 (4) ◽  
pp. 2385-2399 ◽  
Author(s):  
Wendy Maury ◽  
Patrick J. Wright ◽  
Sarahann Bradley

ABSTRACT A novel strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed infected equine fibroblasts (ED cells) but not other infectible cell lines was established. This strain was generated from an avirulent, noncytopathic strain of EIAV, MA-1. Studies with this new cytolytic strain of virus have permitted us to define viral parameters associated with EIAV-induced cell killing and begin to explore the mechanism. vMA-1c infection resulted in induction of rapid cell death, enhanced fusogenic activity, and increased rates of spread in equine fibroblasts compared to other strains of EIAV. The highly cytolytic nature of vMA-1c suggested that this strain might be superinfecting equine fibroblasts. Receptor interference studies demonstrated that prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and kill these cells. In similar studies in a canine fibroblast cell line, receptor interference did occur. vMA-1c infection of equine fibroblasts was also associated with large quantities of unintegrated viral DNA, a well-established hallmark of retroviral superinfection. Cloning of the vMA-1c genome identified nucleotide changes that would result in at least one amino acid change in all viral proteins. A chimeric infectious molecular clone containing the vMA-1c tat, S2, and env open reading frames recapitulated most of the characteristics of vMA-1c, including superinfection, fibroblast killing, and fusogenic activity. In summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generation of a virus that was able to superinfect these cells, presumably by the use of a novel mechanism of cell entry. This phenotype mapped to the 3′ half of the genome.


2001 ◽  
Vol 75 (10) ◽  
pp. 4490-4498 ◽  
Author(s):  
Vladimir Prassolov ◽  
Sibyll Hein ◽  
Marion Ziegler ◽  
Dmitry Ivanov ◽  
Carsten Münk ◽  
...  

ABSTRACT Murine leukemia virus (MuLV) M813 was originally isolated from the Southeast Asian rodent Mus cervicolor. As with the ecotropic MuLVs derived from Mus musculus, its host range is limited to rodent cells. Earlier studies have mapped its receptor to chromosome 2, but it has not been established whether M813 shares a common receptor with any other MuLVs. In this study, we have performed interference assays with M813 and viruses from four interference groups of MuLV. The infection efficiency of M813 was not compromised in cells expressing any one of the other MuLVs, demonstrating that M813 must use a distinct receptor for cell entry. The entire M813 env coding region was molecularly cloned. Sequence analysis revealed high similarity with other MuLVs but with a unique receptor-binding domain. Substitution of M813env sequences in Moloney MuLV resulted in a replication-competent virus with a host range and interference profile similar to those of the biological clone M813. M813 thus defines a novel receptor interference group of type C MuLVs.


2001 ◽  
Vol 75 (8) ◽  
pp. 3520-3526 ◽  
Author(s):  
Heather B. Adkins ◽  
Stephen C. Blacklow ◽  
John A. T. Young

ABSTRACT Subgroups B, D, and E avian leukosis viruses (ALV-B, -D, and -E) share the same chicken receptor, TVBS1, a tumor necrosis factor receptor (TNFR)-related protein. These viruses, however, exhibit nonreciprocal receptor interference (NRI): cells preinfected with ALV-B or ALV-D are resistant to superinfection by viruses of all three subgroups, whereas those pre-infected by ALV-E are resistant only to superinfection by other subgroup E viruses. In this study, we investigated the basis of this phenomenon by characterizing the interaction of TVBS1 with ALV-B Env or ALV-E Env. Sequential immunoprecipitation analysis using surface envelope immunoglobulin fusion proteins revealed the existence of two separate types of TVBS1 that are encoded by the same cDNA clone. One form, designated the type 1 receptor, is specific for ALV-B and ALV-E. The other form, the type 2 receptor, is specific for ALV-B. We show that a protein consisting of only the first and second extracellular cysteine-rich domains of TVBS1 is capable of forming both receptor types. However, the third extracellular cysteine-rich domain is required for efficient formation of the type 1 receptor. We also demonstrate that heterogeneous N-linked glycosylation cannot explain the difference in activities of the two receptor types. The existence of two types of TVBS1 explains the NRI pattern between ALV-B and -E: subgroup B viruses establish receptor interference with both receptor types, whereas subgroup E viruses interfere only with the type 1 receptor, leaving the type 2 receptor available to mediate subsequent rounds of ALV-B entry. The formation of a TVB receptor type that is specific for cytopathic ALV may also have important implications for understanding how some subgroups of ALV cause cell death.


2000 ◽  
Vol 74 (8) ◽  
pp. 3572-3578 ◽  
Author(s):  
Heather B. Adkins ◽  
Jürgen Brojatsch ◽  
John A. T. Young

ABSTRACT Genetic and receptor interference data have indicated the presence of one or more cellular receptors for subgroup B, D, and E avian leukosis viruses (ALV) encoded by the s1 allele of the chicken tvb locus. Despite the prediction that these viruses use the same receptor, they exhibit a nonreciprocal receptor interference pattern: ALV-B and ALV-D can interfere with infection by all three viral subgroups, but ALV-E only interferes with infection by subgroup E viruses. We identified a tvb s1 cDNA clone which encodes a tumor necrosis factor receptor-related receptor for ALV-B, -D, and -E. The nonreciprocal receptor interference pattern was reconstituted in transfected human 293 cells by coexpressing the cloned receptor with the envelope (Env) proteins of either ALV-B or ALV-E. This pattern of interference was also observed when soluble ALV surface (SU)-immunoglobulin fusion proteins were bound to this cellular receptor before viral challenge. These data demonstrate that viral Env-receptor interactions can account for the nonreciprocal interference between ALV subgroups B, D, and E. Furthermore, they indicate that a single chicken gene located attvb s1 encodes receptors for these three viral subgroups. The TVBS1 protein differs exclusively at residue 62 from the published subgroup B- and D-specific receptor, encoded by the s3 allele of tvb. Residue 62 is a cysteine in TVBS1 but is a serine in TVBS3, giving TVBS1 an even number of cysteines in the extracellular domain. We present evidence for a disulfide bond requirement in TVBS1 for ALV-E infection but not for ALV-B infection. Thus, ALV-B and ALV-E interact in fundamentally different ways with this shared receptor, a finding that may account for the observed biological differences between these two ALV subgroups.


2000 ◽  
Vol 74 (7) ◽  
pp. 3177-3187 ◽  
Author(s):  
Won-Bin Young ◽  
Gary L. Lindberg ◽  
Charles J. Link

ABSTRACT Retroviral vector producer cells (VPC) have been considered genetically stable. A clonal cell population exhibiting a uniform vector integration pattern is used for sustained vector production. Here, we observed that the vector copy number is increased and varied in a population of established LTKOSN.2 VPC. Among five subclones of LTKOSN.2 VPC, the vector copy number ranged from 1 to approximately 29 copies per cell. A vector superinfection experiment and Northern blot analysis demonstrated that suppression of helper virus gene expression decreased Env-receptor interference and allowed increased superinfection. The titer production was tightly associated with helper virus gene expression and varied between 0 and 2.2 × 105 CFU/ml in these subclones. In one analyzed subclone, the number of integrated vectors increased from one copy per cell to nine copies per cell during a 31-day period. Vector titer was reduced from 1.5 × 105 CFU to an undetectable level. To understand the mechanism involved, helper virus and vectors were examined for DNA methylation status by methylation-sensitive restriction enzyme digestion. We demonstrated that DNA methylation of helper virus 5′ long terminal repeat occurred in approximately 2% of the VPC population per day and correlated closely with inactivation of helper virus gene expression. In contrast, retroviral vectors did not exhibit significant methylation and maintained consistent transcription activity. Treatment with 5-azacytidine, a methylation inhibitor, partially reversed the helper virus DNA methylation and restored a portion of vector production. The preference for methylation of helper virus sequences over vector sequences may have important implications for host-virus interaction. Designing a helper virus to overcome cellular DNA methylation may therefore improve vector production. The maintenance of increased viral envelope-receptor interference might also prevent replication-competent retrovirus formation.


Sign in / Sign up

Export Citation Format

Share Document