host range restriction
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 6)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Vol 102 (9) ◽  
Author(s):  
Jermilia Charles ◽  
Chandra S. Tangudu ◽  
Daniel Nunez-Avellaneda ◽  
Aaron C. Brault ◽  
Bradley J. Blitvich

Most flaviviruses are transmitted horizontally between vertebrate hosts by haematophagous arthropods. Others exhibit host ranges restricted to vertebrates or arthropods. Vertebrate-specific flaviviruses are commonly referred to as no-known-vector (NKV) flaviviruses and can be separated into bat- and rodent-associated NKV flaviviruses. Rio Bravo virus (RBV) is one of eight recognized bat-associated NKV (B-NKV) flaviviruses. Studies designed to identify the genetic determinants that condition the host range restriction of B-NKV flaviviruses have never been performed. To investigate whether the host range restriction occurs at the level of attachment or entry, chimeric flaviviruses were created by inserting the pre-membrane and envelope protein genes of RBV into the genetic backbones of yellow fever virus (YFV) and Zika virus (ZIKV), two mosquito-borne flaviviruses associated with human disease. The chimeric viruses infected both vertebrate and mosquito cells. In vertebrate cells, all viruses produced similar mean peak titres, but the chimeric viruses grew more slowly than their parental viruses during early infection. In mosquito cells, the chimeric virus of YFV and RBV grew more slowly than YFV at early post-inoculation time points, but reached a similar mean peak titre. In contrast, the chimeric virus of ZIKV and RBV produced a mean peak titre that was approximately 10-fold lower than ZIKV. The chimeric virus of YFV and RBV produced an intermediate plaque phenotype, while the chimeric virus of ZIKV and RBV produced smaller plaques than both parental viruses. To conclude, we provide evidence that the structural glycoproteins of RBV permit entry into both mosquito and vertebrate cells, indicating that the host range restriction of B-NKV flaviviruses is mediated by a post-attachment/entry event.


2020 ◽  
Vol 94 (23) ◽  
Author(s):  
Jingwei Song ◽  
Honglei Sun ◽  
Haoran Sun ◽  
Zhimin Jiang ◽  
Junda Zhu ◽  
...  

ABSTRACT Avian influenza virus (AIV) can cross species barriers to infect humans and other mammals. However, these species-cross transmissions are most often dead-end infections due to host restriction. Current research about host restriction focuses mainly on the barriers of cell membrane, nuclear envelope, and host proteins; whether microRNAs (miRNAs) play a role in host restriction is largely unknown. In this study, we used porcine alveolar macrophage (PAM) cells as a model to elucidate the role of miRNAs in host range restriction. During AIV infection, 40 dysregulation expressed miRNAs were selected in PAM cells. Among them, two Sus scrofa (ssc; swine) miRNAs, ssc-miR-221-3p and ssc-miR-222, could inhibit the infection and replication of AIV in PAM cells by directly targeting viral genome and inducing cell apoptosis via inhibiting the expression of anti-apoptotic protein HMBOX1. Avian but not swine influenza virus caused upregulated expressions of ssc-miR-221-3p and ssc-miR-222 in PAM cells. We further found that NF-κB P65 was more effectively phosphorylated upon AIV infection and that P65 functioned as a transcription activator to regulate the AIV-induced expression of miR-221-3p/222. Importantly, we found that ssc-miR-221-3p and ssc-miR-222 could also be specifically upregulated upon AIV infection in newborn pig tracheal epithelial (NPTr) cells and also exerted anti-AIV function. In summary, our study indicated that miRNAs act as a host barrier during cross-species infection of influenza A virus. IMPORTANCE The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. Host miRNAs can regulate influenza A virus replication; however, the role of miRNAs in host species specificity is unclear. Here, we show that the induced expression of ssc-miR-221-3p and ssc-miR-222 in swine cells is modulated by NF-κB P65 phosphorylation in response to AIV infection but not swine influenza virus infection. ssc-miR-221-3p and ssc-miR-222 exerted antiviral function via targeting viral RNAs and causing apoptosis by inhibiting the expression of HMBOX1 in host cells. These findings uncover miRNAs as a host range restriction factor that limits cross-species infection of influenza A virus.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saskia A. Bergervoet ◽  
Sylvia B. E. Pritz-Verschuren ◽  
Jose L. Gonzales ◽  
Alex Bossers ◽  
Marjolein J. Poen ◽  
...  

Abstract In this study, we explore the circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands. Surveillance data collected between 2006 and 2016 was used to evaluate subtype diversity, spatiotemporal distribution and genetic relationships between wild bird and poultry viruses. We observed close species-dependent associations among hemagglutinin and neuraminidase subtypes. Not all subtypes detected in wild birds were found in poultry, suggesting transmission to poultry is selective and likely depends on viral factors that determine host range restriction. Subtypes commonly detected in poultry were in wild birds most frequently detected in mallards and geese. Different temporal patterns in virus prevalence were observed between wild bird species. Virus detections in domestic ducks coincided with the prevalence peak in wild ducks, whereas virus detections in other poultry types were made throughout the year. Genetic analysis of the surface genes demonstrated that most poultry viruses were related to locally circulating wild bird viruses, but no direct spatiotemporal link was observed. Results indicate prolonged undetected virus circulation and frequent reassortment events with local and newly introduced viruses within the wild bird population. Increased knowledge on LPAI virus circulation can be used to improve surveillance strategies.


2018 ◽  
Vol 92 (11) ◽  
Author(s):  
Turgay Kilic ◽  
Anna Koromyslova ◽  
Virginie Malak ◽  
Grant S. Hansman

ABSTRACTHuman noroviruses are the leading cause of acute gastroenteritis in humans. Noroviruses also infect animals, such as cows, mice, cats, and dogs. How noroviruses bind and enter host cells is still incompletely understood. Recently, the type I transmembrane protein CD300lf was identified as the murine norovirus receptor, yet it is unclear how the virus capsid and receptor interact at the molecular level. In this study, we determined the X-ray crystal structure of the soluble CD300lf (sCD300lf) and the murine norovirus capsid protruding domain complex at a 2.05-Å resolution. We found that the sCD300lf-binding site is located on the topside of the protruding domain and involves a network of hydrophilic and hydrophobic interactions. sCD300lf locked nicely into a complementary cavity on the protruding domain that is additionally coordinated with a positive surface charge on sCD300lf and a negative surface charge on the protruding domain. Five of six protruding domain residues interacting with sCD300lf were maintained between different murine norovirus strains, suggesting that sCD300lf was capable of binding to a highly conserved pocket. Moreover, a sequence alignment with other CD300 paralogs showed that the sCD300lf-interacting residues were partially conserved in CD300ld but variable in other CD300 family members, consistent with previously reported infection selectivity. Overall, these data provide insights into how a norovirus engages a protein receptor and will be important for a better understanding of selective recognition and norovirus attachment and entry mechanisms.IMPORTANCENoroviruses exhibit exquisite host range specificity due to species-specific interactions between the norovirus capsid protein and host molecules. Given this strict host range restriction, it has been unclear how the viruses are maintained within a species between relatively sporadic epidemics. While much data demonstrate that noroviruses can interact with carbohydrates, recent work has shown that expression of the protein CD300lf is both necessary and sufficient for murine norovirus infection of mice and binding of the virus to permissive cells. Importantly, the expression of this murine protein by human cells renders them fully permissive for murine norovirus infection, indicating that at least in this case, host range restriction is determined by molecular events that control receptor binding and entry. Defining the atomic-resolution interactions between the norovirus capsid protein and its cognate receptor is essential for a molecular understanding of host-range restriction and norovirus tropism.


2016 ◽  
Vol 113 (36) ◽  
pp. 10157-10162 ◽  
Author(s):  
Mohammed Shabab ◽  
Markus F. F. Arnold ◽  
Jon Penterman ◽  
Andrew J. Wommack ◽  
Hartmut T. Bocker ◽  
...  

Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents. Medicago truncatula encodes a family of >700 NCR peptides that have conserved cysteine motifs. NCR247 is a cationic peptide with four cysteines that can form two intramolecular disulfide bonds in the oxidized forms. This peptide affects Sinorhizobium meliloti transcription, translation, and cell division at low concentrations and is antimicrobial at higher concentrations. By preparing the three possible disulfide–cross-linked NCR247 regioisomers, the reduced peptide, and a variant lacking cysteines, we performed a systematic study of the effects of intramolecular disulfide cross-linking and cysteines on the activities of an NCR peptide. The relative activities of the five NCR247 variants differed strikingly among the various bioassays, suggesting that the NCR peptide-based language used by plants to control the development of their bacterial partners during symbiosis is even greater than previously recognized. These patterns indicate that certain NCR bioactivities require cysteines whereas others do not. The results also suggest that NCR247 may exert some of its effects within the cell envelope whereas other activities occur in the cytoplasm. BacA, a membrane protein that is critical for symbiosis, provides protection against all bactericidal forms of NCR247. Oxidative folding protects NCR247 from degradation by the symbiotically relevant metalloprotease HrrP (host range restriction peptidase), suggesting that disulfide bond formation may additionally stabilize NCR peptides during symbiosis.


2015 ◽  
Vol 112 (49) ◽  
pp. 15244-15249 ◽  
Author(s):  
Paul A. Price ◽  
Houston R. Tanner ◽  
Brett A. Dillon ◽  
Mohammed Shabab ◽  
Graham C. Walker ◽  
...  

Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.


2015 ◽  
Vol 89 (17) ◽  
pp. 9133-9136 ◽  
Author(s):  
Janine Mühe ◽  
Fred Wang

Epstein-Barr-related herpesviruses, or lymphocryptoviruses (LCV), naturally infect humans and nonhuman primates (NHP), but their host range is not well characterized. Using LCV and B cells from multiple species of Hominidae and Cercopithecidae, we show that LCV can immortalize B cells from some nonnative species but that growth transformation is restricted to B cells from their own family of hominoids or Old World NHP, suggesting a high degree of LCV adaptation to their natural primate host.


Sign in / Sign up

Export Citation Format

Share Document