Pattern instability of functionally graded and layered elastic films under van der Waals forces

2008 ◽  
Vol 198 (1-2) ◽  
pp. 65-86 ◽  
Author(s):  
Xu Wang ◽  
L. J. Sudak ◽  
E. Pan
2018 ◽  
Vol 10 (08) ◽  
pp. 1850091 ◽  
Author(s):  
Mohamed A. Attia ◽  
Salwa A. Mohamed

In this paper, an integrated non-classical continuum model is developed to investigate the pull-in instability of electrostatically actuated functionally graded nanocantilevers. The model accounts for the simultaneous effects of local-microstructure, surface elasticity and surface residual in the presence of fringing field as well as Casimir and van der Waals forces. The modified couple stress and Gurtin–Murdoch surface elasticity theories are employed to conduct the scaling effects of microstructure and surface energy, respectively, in the context of Euler–Bernoulli beam hypothesis. Bulk and surface material properties are varied according to the power-law distribution through the beam thickness. The physical neutral axis position for mentioned FG nanobeams is considered. Hamilton principle is employed to derive the nonlinear size-dependent governing equations and the non-classical boundary conditions. The resulting nonlinear differential equations are solved utilizing the generalized differential quadrature method (GDQM). In addition, the non-classical boundary conditions of nanocantilever beams due to surface residual stress are exactly implemented. After validation of the obtained results by previously available data in the literature, the influences of different geometrical and material parameters on the pull-in instability of the FG nanocantilevers are examined in detail. It is concluded that the pull-in behavior of electrically actuated FG micro/nanocantilevers is significantly influenced by the material distribution, material length scale parameter, surface elasticity constant, surface residual stress, initial gap, slenderness ratio, Casimir, and van der Waals forces. The obtained results can be considered for modeling and analysis of electrically actuated FG nanocantilevers.


2020 ◽  
Author(s):  
Daniel B. Straus ◽  
Robert J. Cava

The design of new chiral materials usually requires stereoselective organic synthesis to create molecules with chiral centers. Less commonly, achiral molecules can self-assemble into chiral materials, despite the absence of intrinsic molecular chirality. Here, we demonstrate the assembly of high-symmetry molecules into a chiral van der Waals structure by synthesizing crystals of C<sub>60</sub>(SnI<sub>4</sub>)<sub>2</sub> from icosahedral buckminsterfullerene (C<sub>60</sub>) and tetrahedral SnI4 molecules through spontaneous self-assembly. The SnI<sub>4</sub> tetrahedra template the Sn atoms into a chiral cubic three-connected net of the SrSi<sub>2</sub> type that is held together by van der Waals forces. Our results represent the remarkable emergence of a self-assembled chiral material from two of the most highly symmetric molecules, demonstrating that almost any molecular, nanocrystalline, or engineered precursor can be considered when designing chiral assemblies.


Small ◽  
2021 ◽  
pp. 2102585
Author(s):  
Sofie Cambré ◽  
Ming Liu ◽  
Dmitry Levshov ◽  
Keigo Otsuka ◽  
Shigeo Maruyama ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1916-1927
Author(s):  
Jianmei Huang ◽  
Qiang Wang ◽  
Pengfei Liu ◽  
Guang-hui Chen ◽  
Yanhui Yang

The evolution of the interface and interaction of h-BN and graphene/h-BN (Gr/h-BN) on Cu(111)–Ni and Ni(111)–Cu surface alloys versus the Ni/Cu atomic percentage on the alloy surface were comparatively studied by DFT-D2, including critical long-range van der Waals forces.


Earlier work on condensation phenomena is briefly reviewed, and existing measurements of condensation energies are summarized. Measurements of condensation energies have been made for aluminium, silver and cadmium on glass and for aluminium and silver on single-crystal cleavage surfaces of sodium chloride and potassium bromide. Adhesive energies or binding energies between film and substrate have been calculated in each case. Association energies for nucleation are obtained by difference and shown to be consistent. Results for cadmium show good agreement with earlier work, but results for aluminium do not agree with the earlier results of Rhodin who measured the condensation energies for aluminium on various substrates, obtaining values which suggest chemisorption. These results appear to be too high and a possible explanation is given. It is concluded that the adhesive energy is due to physical adsorption and can be explained in terms of van der Waals forces only.


Sign in / Sign up

Export Citation Format

Share Document