Theoretical analyses and numerical simulation of flexural vibration based on Reddy and modified higher-order plate theories for a transversely isotropic circular plate

2021 ◽  
Author(s):  
Ming Ji ◽  
Yi-Chuang Wu ◽  
Chien-Ching Ma
2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


2016 ◽  
pp. 1456-1470 ◽  
Author(s):  
Saeed Panahian Fard ◽  
Zarita Zainuddin

One of the most important problems in the theory of approximation functions by means of neural networks is universal approximation capability of neural networks. In this study, we investigate the theoretical analyses of the universal approximation capability of a special class of three layer feedforward higher order neural networks based on the concept of approximate identity in the space of continuous multivariate functions. Moreover, we present theoretical analyses of the universal approximation capability of the networks in the spaces of Lebesgue integrable multivariate functions. The methods used in proving our results are based on the concepts of convolution and epsilon-net. The obtained results can be seen as an attempt towards the development of approximation theory by means of neural networks.


Author(s):  
G. Carta ◽  
M. J. Nieves ◽  
I. S. Jones ◽  
N. V. Movchan ◽  
A. B. Movchan

In this paper, we study the spectral properties of a finite system of flexural elements connected by gyroscopic spinners. We determine how the eigenfrequencies and eigenmodes of the system depend on the gyricity of the spinners. In addition, we present a transient numerical simulation that shows how a gyroscopic spinner attached to the end of a hinged beam can be used as a ‘stabilizer’, reducing the displacements of the beam. We also discuss the dispersive properties of an infinite periodic system of beams with gyroscopic spinners at the junctions. In particular, we investigate how the band-gaps of the structure can be tuned by varying the gyricity of the spinners. This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 1)’.


2006 ◽  
Vol 16 (02) ◽  
pp. 419-425 ◽  
Author(s):  
MAO-YIN CHEN ◽  
DONG-HUA ZHOU ◽  
YUN SHANG

This Letter considers the problem of chaotic secure communication in the drive-response framework. The drive system can be augmented into a higher order system, and then a sliding mode observer based response system can be constructed to synchronize this augmented system. If they satisfy certain conditions, the hidden message can be recovered directly by the concept of equivalent control. Theoretical analysis and numerical simulation verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document