Halotolerance is enhanced in carrot callus by sensing hypergravity: influence of calcium modulators and cytochalasin D

PROTOPLASMA ◽  
2006 ◽  
Vol 229 (2-4) ◽  
pp. 149-154 ◽  
Author(s):  
G. F. E. Scherer
Genetics ◽  
2000 ◽  
Vol 156 (4) ◽  
pp. 1817-1828 ◽  
Author(s):  
Wei Geng ◽  
Biao He ◽  
Mina Wang ◽  
Paul N Adler

Abstract During their differentiation epidermal cells of Drosophila form a rich variety of polarized structures. These include the epidermal hairs that decorate much of the adult cuticular surface, the shafts of the bristle sense organs, the lateral extensions of the arista, and the larval denticles. These cuticular structures are produced by cytoskeletal-mediated outgrowths of epidermal cells. Mutations in the tricornered gene result in the splitting or branching of all of these structures. Thus, tricornered function appears to be important for maintaining the integrity of the outgrowths. tricornered mutations however do not have major effects on the growth or shape of these cellular extensions. Inhibiting actin polymerization in differentiating cells by cytochalasin D or latrunculin A treatment also induces the splitting of hairs and bristles, suggesting that the actin cytoskeleton might be a target of tricornered. However, the drugs also result in short, fat, and occasionally malformed hairs and bristles. The data suggest that the function of the actin cytoskeleton is important for maintaining the integrity of cellular extensions as well as their growth and shape. Thus, if tricornered causes the splitting of cellular extensions by interacting with the actin cytoskeleton it likely does so in a subtle way. Consistent with this possibility we found that a weak tricornered mutant is hypersensitive to cytochalasin D. We have cloned the tricornered gene and found that it encodes the Drosophila NDR kinase. This is a conserved ser/thr protein kinase found in Caenorhabditis elegans and humans that is related to a number of kinases that have been found to be important in controlling cell structure and proliferation.


1997 ◽  
Vol 77 (01) ◽  
pp. 143-149 ◽  
Author(s):  
Annelies Schootemeijer ◽  
Gijsbert van Willigen ◽  
Hans van der Vuurst ◽  
Leon G J Tertoolen ◽  
Siegfried W De Laat ◽  
...  

SummaryThe migration of integrins to sites of cell-cell and cell-matrix contact is thought to be important for adhesion strengthening. We studied the lateral diffusion of integrin αIIbβ3 (glycoprotein Ilb/IIIa) in the plasma membrane of a cultured human megakaryocyte by fluorescence recovery after photobleaching of FITC-labelled monovalent Fab fragments directed against the P3 subunit. The diffusion of P3 on the unstimulated megakaryocyte showed a lateral diffusion coefficient (D) of 0.37 X10'9 cm2/s and a mobile fraction of about 50%. Stimulation with ADP (20 μM) or α-thrombin (10 U/ml) at 22° C induced transient decreases in both parameters reducing D to 0.21 X 10‘9 cm2/s and the mobile fraction to about 25%. The fall in D was observed within 1 min after stimulation but the fall in mobile fraction showed a lag phase of 5 min. The lag phase was absent in the presence of Calpain I inhibitor, whereas cytochalasin D completely abolished the decrease in mobile fraction. The data are compatible with the concept that cell activation induces anchorage of 50% of the mobile αIIbβ3 (25% of the whole population of receptor) to the cytoplasmic actin filaments, although, as discussed, other rationals are not ruled out.


2012 ◽  
Vol 36 (12) ◽  
pp. 1223-1231 ◽  
Author(s):  
Takato Takenouchi ◽  
Yoshifumi Iwamaru ◽  
Morikazu Imamura ◽  
Shigetomo Fukuhara ◽  
Shuei Sugama ◽  
...  

1996 ◽  
Vol 156 (2) ◽  
pp. 94-98 ◽  
Author(s):  
E. Peschke ◽  
R. Spessert ◽  
I. Spiwoks-Becker ◽  
P. Dorner ◽  
L. Vollrath

2006 ◽  
Vol 290 (3) ◽  
pp. C691-C701 ◽  
Author(s):  
Madalina Condrescu ◽  
John P. Reeves

In the present study, the bovine cardiac Na+/Ca2+ exchanger (NCX1.1) was expressed in Chinese hamster ovary cells. The surface distribution of the exchanger protein, externally tagged with the hemagglutinin (HA) epitope, was associated with underlying actin filaments in regions of cell-to-cell contact and also along stress fibers. After we treated cells with cytochalasin D, NCX1.1 protein colocalized with patches of fragmented filamentous actin (F-actin). In contrast, an HA-tagged deletion mutant of NCX1.1 that was missing much of the exchanger's central hydrophilic domain Δ(241–680) did not associate with F-actin. In cells expressing the wild-type exchanger, cytochalasin D inhibited allosteric Ca2+ activation of NCX activity as shown by prolongation of the lag phase of low Ca2+ uptake after initiation of the reverse (i.e., Ca2+ influx) mode of NCX activity. Other agents that perturbed F-actin structure (methyl-β-cyclodextrin, latrunculin B, and jasplakinolide) also increased the duration of the lag phase. In contrast, when reverse-mode activity was initiated after allosteric Ca2+ activation, both cytochalasin D and methyl-β-cyclodextrin (Me-β-CD) stimulated NCX activity by ∼70%. The activity of the Δ(241–680) mutant, which does not require allosteric Ca2+ activation, was also stimulated by cytochalasin D and Me-β-CD. The increased activity after these treatments appeared to reflect an increased amount of exchanger protein at the cell surface. We conclude that wild-type NCX1.1 associates with the F-actin cytoskeleton, probably through interactions involving the exchanger's central hydrophilic domain, and that this association interferes with allosteric Ca2+ activation.


1991 ◽  
Vol 73 (2-3) ◽  
pp. 20a-20a
Author(s):  
Claire Huleux ◽  
Catherine Dreux ◽  
Michel Lemullois ◽  
Bernard Rossignol

2001 ◽  
Vol 3 (2) ◽  
pp. 151-155 ◽  
Author(s):  
Hong Xu ◽  
Wei-Shuo Fang ◽  
Xiao-Guang Chen ◽  
Wen-Yi He ◽  
Ke-Di Cheng
Keyword(s):  

1973 ◽  
Vol 5 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Armand F. Miranda ◽  
Gabriel C. Godman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document