scholarly journals Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings

PROTOPLASMA ◽  
2012 ◽  
Vol 250 (4) ◽  
pp. 851-861 ◽  
Author(s):  
Anita Kunikowska ◽  
Anna Byczkowska ◽  
Andrzej Kaźmierczak
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Kaźmierczak ◽  
Anita Kunikowska ◽  
Magdalena Doniak ◽  
Andrzej Kornaś

AbstractCell death (CD) may be induced by endogenous or exogenous factors and contributes to all the steps of plant development. This paper presents results related to the mechanism of CD regulation induced by kinetin (Kin) in the root cortex of Vicia faba ssp. minor. To explain the process, 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55), adenine (Ad), 5′-amine-5′-deoxyadenosine (Ado) and N-(2-chloro-4-piridylo)-N′-phenylurea (CPPU) were applied to (i) block cytokinin receptors (CKs) and inhibit the activities of enzymes of CK metabolism, i.e., (ii) phosphoribosyltransferase, (iii) kinases, and (iv) oxidases, respectively. Moreover, ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), lanthanum chloride (LaCl3), ruthenium red (RRed) and cyclosporine A (CS-A) were applied to (i) chelate extracellular calcium ions (Ca2+) as well as blocks of (ii) plasma-, (iii) endoplasmic reticulum- (ER) membrane Ca2+ ion channels and (iv) mitochondria- (MIT) Ca2+ ions release by permeability transition por (PTP), respectively. The measured physiological effectiveness of these factors was the number of living and dying cortex cells estimated with orange acridine (OA) and ethidium bromide (EB), the amounts of cytosolic Ca2+ ions with chlortetracycline (CTC) staining and the intensity of chromatin and Ca2+-CTC complex fluorescence, respectively. Moreover, the role of sorafenib, an inhibitor of RAF kinase, on the vitality of cortex cells and ethylene levels as well as the activities of RAF-like kinase and MEK2 with Syntide-2 and Mek2 as substrates were studied. The results clarified the previously presented suggestion that Kin is converted to appropriate ribotides (5′-monophosphate ribonucleotides), which cooperate with the ethylene and Ca2+ ion signalling pathways to transduce the signal of kinetin-programmed cell death (Kin-PCD). Based on the present and previously published results related to Kin-PCD, the crosstalk between ethylene and MAP kinase signalling, as well as inhibitors of CK receptors and enzymes of their metabolism, is proposed.


1987 ◽  
Vol 83 (1) ◽  
pp. 159-162 ◽  
Author(s):  
Xiao-Jun Zhao ◽  
Edward Sucoff ◽  
Eduard J. Stadelmann

2018 ◽  
Vol 70 (3) ◽  
pp. 413-423 ◽  
Author(s):  
Mohamed Farissi ◽  
Mohammed Mouradi ◽  
Omar Farssi ◽  
Abdelaziz Bouizgaren ◽  
Cherki Ghoulam

Salinity is one of the most serious agricultural problems that adversely affects growth and productivity of pasture crops such as alfalfa. In this study, the effects of salinity on some ecophysiological and biochemical criteria associated with salt tolerance were assessed in two Moroccan alfalfa (Medicago sativa L.) populations, Taf 1 and Tata. The experiment was conducted in a hydro-aeroponic system containing nutrient solutions, with the addition of NaCl at concentrations of 100 and 200 mM. The salt stress was applied for a month. Several traits in relation to salt tolerance, such as plant dry biomass, relative water content, leaf gas exchange, chlorophyll fluorescence, nutrient uptake, lipid peroxidation and antioxidant enzymes, were analyzed at the end of the experiment. The membrane potential was measured in root cortex cells of plants grown with or without NaCl treatment during a week. The results indicated that under salt stress, plant growth and all of the studied physiological and biochemical traits were significantly decreased, except for malondialdehyde and H2O2 contents, which were found to be increased under salt stress. Depolarization of membrane root cortex cells with the increase in external NaCl concentration was noted, irrespective of the growth conditions. The Tata population was more tolerant to high salinity (200 mM NaCl) and its tolerance was associated with the ability of plants to maintain adequate levels of the studied parameters and their ability to overcome oxidative stress by the induction of antioxidant enzymes, such as guaiacol peroxidase, catalase and superoxide dismutase.


1970 ◽  
Vol 25 (12) ◽  
pp. 1477-1479 ◽  
Author(s):  
Charlotte Hecht-Buchholz ◽  
Horst Marschner

Treatment (1-3h) of corn root tips with 5 × 10-5ᴍ tetraphenylboron (TPB) caused characteristic changes of the membrane structure in the outer layers of the root cortex cells. The mitochondria had lost their inner structure. At the double membrane of the mitochondria and at the membrane plasmalemma, tonoplast, and endoplasmatic reticulum there appeared numerous osmiophilic globuli (ca. 50 nm). The permeability of the membranes seemed to be increased extremely. It is suggested that the lipoproteine complex of the membranes was destroyed by interaction of TPB with ammonium groups of the membrane constituents


1992 ◽  
Vol 103 (3) ◽  
pp. 847-855 ◽  
Author(s):  
J.L. Oud ◽  
N. Nanninga

Three-dimensional chromosome orientation was studied in thick sections of Vicia faba root meristem, using confocal microscopy and digital image analysis techniques. In the proliferative part of the root meristem, where the cells are organized in longitudinal files, it was expected to find dividing cells with a spindle axis parallel to the file axis and, occasionally, perpendicular to the file axis (resulting in a local file bifurcation). However, we observed a large number of oblique spindle axes. From metaphase to telophase there was a progressive increase in the rotation of the spindle axis. A 90° turn of the metaphase equator plane was never observed. Three-dimensional measurements of both the space occupied by the ana- and telophase chromosome configurations, and the size of the corresponding cortex cells, showed that most cells were too flat for an orientation of the spindle parallel to the file axis. Apparently, cell size limitations forced the spindle to rotate during mitosis. Consequently, the nuclei in the daughter cells were positioned diagonally in opposite directions, instead of on top of each other. In the majority of these cells, a transverse plane of division would intersect the nuclei. Therefore, the new cell wall was sigmoid shaped or oblique. Most daughter cells remained within the original cell file but, occasionally, in extremely flat cells the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis. This resulted in file bifurcation. It has been concluded that cell shape, the extent of spindle rotation and the position of the division plane are related.


Sign in / Sign up

Export Citation Format

Share Document