The P3 kimberlite and P4 lamproite, Wajrakarur kimberlite field, India: mineralogy, and major and minor element compositions of olivines as records of their phenocrystic vs xenocrystic origin

2018 ◽  
Vol 112 (S2) ◽  
pp. 609-624 ◽  
Author(s):  
Azhar M. Shaikh ◽  
Satya P. Kumar ◽  
Suresh C. Patel ◽  
Satyajeet S. Thakur ◽  
Subramanian Ravi ◽  
...  
Author(s):  
Teruhisa Komatsu ◽  
Teruhisa Komatsu ◽  
Shuji Sasa ◽  
Shuji Sasa ◽  
Shigeru Montani ◽  
...  

Rias-type bays are one of the most common coasts in Japan where aquacultures have been active due to sheltered geological shape with a deep bottom. The huge tsunami hit Sanriku Coast consisting of open rias-type bays near the epicenter facing Pacific Ocean on 11 March 2011. For recovering Sanriku Coast, it is important to include sustainability in its program. Satoumi is defined as the human use and management of coastal seas for high productivity while maintaining high biodiversity. Therefore, we proposed Satoumi approach to an open rias-type bay, Shizugawa Bay, in southern Sanriku Coast. We conducted scientific researches on mapping of coastal habitats and aquaculture facilities, hydrography, and material flows of nutrients, a minor element (Fe) and organic matters in the bay including those from the rivers and from the offshore waters. At the same time, Committee for Shizugawa Bay Management of Fishermen’s Cooperative of Miyagi Prefecture decided to decrease in aquaculture facilities for sustainable development of aquaculture. Based on these data, a physical-biological coupling model was used for calculating the number of aquaculture facilities that are suitable not only for yields but also for environments. These researches were established on strong collaborations among a fishermen’s’ cooperative, local governments and scientists. Results of this practice may help to realize sustainable coastal use of a rias-type bay.


1970 ◽  
Vol 78 (3) ◽  
pp. 304-325 ◽  
Author(s):  
Tom Simkin ◽  
J. V. Smith

2020 ◽  
Vol 6 (1) ◽  
pp. 454-476
Author(s):  
Franco Foresta Martin ◽  
Silvio G. Rotolo ◽  
Manuela Nazzari ◽  
Maria Luisa Carapezza

Abstract Chlorine is a minor element present in obsidians in quantities greater than in average igneous rocks. The chlorine concentration in obsidians is generally low, of the order of tenths of wt %, but it exhibits an appreciable differentiation among geological sources. Despite these characteristics, chlorine has rarely been taken into consideration as a possible indicator of obsidian provenance and it does not appear in the chemical analytical tables accompanying the geochemical characterisation of obsidian samples. In this work, after an overview of chlorine geochemistry and cycle, we present thirty-one new electron microprobe (EPMA) analyses, including Cl, of geologic obsidians sampled from the four sources of the Central Mediterranean, exploited in prehistoric times (Monte Arci, Palmarola, Lipari and Pantelleria). The results are compared with 175 new EPMA analyses, including Cl, of archaeological obsidians already characterised in previous work and of known provenance. As such it was possible to ascertain that each source has a characteristic chlorine concentration, showing the utility of its use in the studies of obsidian provenance. Furthermore, given that the solubility of chlorine in silicate melts is correlated to its alkali content, in particular sodium, we assessed the efficacy of simple binary graphs Cl vs Na2O to better constrain the provenance of the obsidian samples.


1973 ◽  
Vol 3 (2) ◽  
pp. 307-315 ◽  
Author(s):  
M.J. Dudas ◽  
M.E. Harward ◽  
R.A. Schmitt

AbstractPrimary mineral phenocrysts from eight different late Quaternary pyroclastic deposits were fractionated for neutron-activation analysis with the purpose of characterizing each of the deposits on the basis of trace and minor element compositions. In hornblende separates, contents of several rare earth and transition elements were found to be distinctive for the Mazama, Glacier Peak, and several St. Helens deposits. In magnetites, abundances of transition elements are characteristic and serve as good discriminants for the pyroclastic deposits examined in this investigation. Contents of transition and rare earth elements in hyperthenes also appear useful in distinguishing volcanic ash deposits. Trace and minor element abundances in plagioclase phenocrysts did not appear adequate for identification of pyroclastics due to elemental depletion and similarity of contents for feldspar separates. It was found that contents of Sm and Yb in hornblende phenocrysts would serve to distinguish between several pyroclastic deposits from the Pacific Northwest.


1972 ◽  
Vol 36 (2) ◽  
pp. 113-122 ◽  
Author(s):  
H. J. Bollingberg ◽  
I. Bryhni
Keyword(s):  

1981 ◽  
Vol 32 (1-4) ◽  
pp. 255-269 ◽  
Author(s):  
A. Bellanca ◽  
P. Di Salvo ◽  
P. Möller ◽  
R. Neri ◽  
F. Schley

Sign in / Sign up

Export Citation Format

Share Document