Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia

Extremophiles ◽  
2010 ◽  
Vol 14 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Nadia Khelifi ◽  
Emna Ben Romdhane ◽  
Abdeljabbar Hedi ◽  
Anne Postec ◽  
Marie-Laure Fardeau ◽  
...  
2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 479-483 ◽  
Author(s):  
Anna A. Perevalova ◽  
Ilya V. Kublanov ◽  
R. V. Baslerov ◽  
Gengxin Zhang ◽  
Elizaveta A. Bonch-Osmolovskaya

A novel thermophilic bacterium, strain Kam1851T, was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851T were spore-forming rods with a Gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5–8.5. The optimal growth (doubling time, 6.0 h) was at 60–65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C16 : 0 (34.2 %), iso-C16 : 0 (18 %), C18 : 0 (12.8 %) and iso-C17 : 0 (11.1 %). The G+C content of the genomic DNA of strain Kam1851T was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851T belonged to the order Thermoanaerobacterales , but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera Ammonifex and Caldanaerobacter . On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851T is proposed to represent a novel species in a new genus, Brockia lithotrophica gen. nov., sp. nov.; the type strain of Brockia lithotrophica is Kam1851T ( = DSM 22653T = VKM B-2685T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1396-1402 ◽  
Author(s):  
Carolina Rubiano-Labrador ◽  
Sandra Baena ◽  
Carolina Díaz-Cárdenas ◽  
Bharat K. C. Patel

An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA AT, was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50′ 14.0″ N 75° 32′ 53.4″ W). Cells of strain USBA AT were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37–55 °C and pH 6.0–8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA AT required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA AT did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA AT was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml−1). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA AT belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5T (95.0 % sequence similarity). A DNA–DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA AT and Caloramator viterbiensis DSM 13723T. Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA–DNA hybridization experiments, strain USBA AT represents a novel species of the genus Caloramator , for which the name Caloramator quimbayensis sp. nov. is proposed. The type strain is USBA AT ( = CMPUJ U833T  = DSM 22093T).


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Sucharita Bose ◽  
Trinetra Mukherjee ◽  
Urmimala Sen ◽  
Chayan Roy ◽  
Moidu Jameela Rameez ◽  
...  

Here, we present the draft genome sequence ofGeobacillus thermoleovoransstrain N7 (MCC 3175), isolated from Paniphala Hot Spring, West Bengal, India, which contains genes that encode several industrially and medically important thermostable enzymes like neutral protease, xylose isomerase, rhamnogalacturonan acetylesterase, nitrate and nitrite reductase,l-asparaginase, glutaminase, and RNase P.


2010 ◽  
Vol 60 (2) ◽  
pp. 338-343 ◽  
Author(s):  
Sara L. Caldwell ◽  
Yitai Liu ◽  
Isabel Ferrera ◽  
Terry Beveridge ◽  
Anna-Louise Reysenbach

A thermophilic bacterium, designated strain CR11T, was isolated from a filamentous sample collected from a terrestrial hot spring on the south-western foothills of the Rincón volcano in Costa Rica. The Gram-negative cells are approximately 2.4–3.9 μm long and 0.5–0.6 μm wide and are motile rods with polar flagella. Strain CR11T grows between 65 and 85 °C (optimum 75 °C, doubling time 4.5 h) and between pH 4.8 and 7.8 (optimum pH 5.9–6.5). The isolate grows chemolithotrophically with S0, or H2 as the electron donor and with O2 (up to 16 %, v/v) as the sole electron acceptor. The isolate can grow on mannose, glucose, maltose, succinate, peptone, Casamino acids, starch, citrate and yeast extract in the presence of oxygen (4 %) and S0. Growth occurs only at NaCl concentrations below 0.4 % (w/v). The G+C content of strain CR11T is 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence places the strain as a close relative of Thermocrinis ruber OC 1/4T (95.7 % sequence similarity). Based on phylogenetic and physiological characteristics, we propose the name Thermocrinis minervae sp. nov., with CR11T (=DSM 19557T =ATCC BAA-1533T) as the type strain.


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 550-555 ◽  
Author(s):  
Linda Jabari ◽  
Hana Gannoun ◽  
Jean-Luc Cayol ◽  
Moktar Hamdi ◽  
Guy Fauque ◽  
...  

A novel thermophilic, anaerobic, Gram-stain-positive, terminal-spore-forming bacterium was isolated from an upflow anaerobic filter treating abattoir wastewaters in Tunisia. This strain, designated LIND6LT2T, grew at 40–60 °C (optimum 50–55 °C) and at pH 6.0–8.5 (optimum pH 7.0–7.5). It did not require NaCl for growth, but tolerated it up to 2 %. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as electron acceptors. Growth of LIND6LT2T was inhibited by sulfite (2 mM). Strain LIND6LT2T used cellobiose, glucose, mannose, maltose, mannitol, sucrose and xylose as electron donors. The main fermentation products from glucose metabolism were acetate, formate, butyrate and isobutyrate. The predominant cellular fatty acids were C16 : 0 (68.4 %) and C14 : 0 (8.3 %). The G+C content of the genomic DNA was 35.2 mol%. On the basis of its phylogenetic and physiological properties, a new genus and species, Defluviitalea saccharophila gen. nov., sp. nov., are proposed to accommodate strain LIND6LT2T, placed in Defluviitaleaceae fam. nov. within the phylum Firmicutes, class Clostridia, order Clostridiales. Strain LIND6LT2T ( = DSM 22681T  = JCM 16312T) is the type strain of Defluviitalea saccharophila, which itself is the type species of Defluviitalea.


Sign in / Sign up

Export Citation Format

Share Document