scholarly journals Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the “blind docking” approach

2005 ◽  
Vol 12 (3) ◽  
pp. 366-372 ◽  
Author(s):  
Bogdan Iorga ◽  
Denyse Herlem ◽  
Elvina Barré ◽  
Catherine Guillou
2020 ◽  
Vol 36 (11) ◽  
pp. 3379-3384 ◽  
Author(s):  
Adrien H Cerdan ◽  
Marion Sisquellas ◽  
Gilberto Pereira ◽  
Diego E Barreto Gomes ◽  
Jean-Pierre Changeux ◽  
...  

Abstract Motivation Glycine receptors (GlyRs) mediate fast inhibitory neurotransmission in the brain and have been recognized as key pharmacological targets for pain. A large number of chemically diverse compounds that are able to modulate GlyR function both positively and negatively have been reported, which provides useful information for the development of pharmacological strategies and models for the allosteric modulation of these ion channels. Results Based on existing literature, we have collected 218 unique chemical entities with documented modulatory activities at homomeric GlyR-α1 and -α3 and built a database named GRALL. This collection includes agonists, antagonists, positive and negative allosteric modulators and a number of experimentally inactive compounds. Most importantly, for a large fraction of them a structural annotation based on their putative binding site on the receptor is provided. This type of annotation, which is currently missing in other drug banks, along with the availability of cooperativity factors from radioligand displacement experiments are expected to improve the predictivity of in silico methodologies for allosteric drug discovery and boost the development of conformation-based pharmacological approaches. Availability and implementation The GRALL library is distributed as a web-accessible database at the following link: https://ifm.chimie.unistra.fr/grall. For each molecular entry, it provides information on the chemical structure, the ligand-binding site, the direction of modulation, the potency, the 3D molecular structure and quantum-mechanical charges as determined by our in-house pipeline. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2014 ◽  
Vol 5 (12) ◽  
pp. 1246-1252 ◽  
Author(s):  
Edward J. Bertaccini ◽  
Robert Dickinson ◽  
James R. Trudell ◽  
Nicholas P. Franks

2021 ◽  
Author(s):  
Olivier Sheik Amamuddy ◽  
Rita Afriyie Baoteng ◽  
Victor Barozi ◽  
Dorothy Wavinya Nyamai ◽  
Ozlem Tastan Bishop

The rational search for allosteric modulators and the allosteric mechanisms of these modulators in the presence of evolutionary mutations, including resistant ones, is a relatively unexplored field. Here, we established novel in silico approaches and applied to SARS-CoV-2 main protease (Mpro). First, we identified six potential allosteric modulators (SANC00302, SANC00303, SANC00467, SANC00468, SANC00469, SANC00630) from the South African Natural Compounds Database (SANCDB) bound to the allosteric pocket of Mpro that we determined in our previous work. We also checked the stability of these compounds against Mpro of laboratory strain HCoV-OC43 and identified differences due to residue changes between the two proteins. Next, we focused on understanding the allosteric effects of these modulators on each protomer of the reference Mpro protein, while incorporating the symmetry problem in the functional homodimer. In general, asymmetric behavior of multimeric proteins is not commonly considered in computational analysis. We introduced a novel combinatorial approach and dynamic residue network (DRN) analysis algorithms to examine patterns of change and conservation of critical nodes, according to five independent criteria of network centrality (betweenness centrality (BC), closeness centrality (CC), degree centrality (DC), eigencentrality (EC) and katz centrality (KC)). The relationships and effectiveness of each metric in characterizing allosteric behavior were also investigated. We observed highly conserved network hubs for each averaged DRN metric on the basis of their existence in both protomers in the absence and presence of all ligands, and we called them persistent hubs (residues 17, 111, 112 and 128 for averaged BC; 6, 7, 113, 114, 115, 124, 125, 126, 127 and 128 for averaged CC; 36, 91, 146, 150 and 206 for averaged DC; 7, 115 and 125 for EC; 36, 125 and 146 for KC). We also detected ligand specific signal changes some of which were in or around functional residues (i.e. chameleon switch PHE140). Using EC persistent hubs and ligand introduced hubs we identified a residue communication path between allosteric binding site and catalytic site. Finally, we examined the effects of the mutations on the behavior of the protein in the presence of selected potential allosteric modulators and investigated the ligand stability. The hit compounds showed various levels of stability in the presence of SARS-CoV-2 Mpro mutations, being most stable in A173V, N274D and R279C, and least stable in R60C, N151D V157I, C160S and A255V. SANC00468 was the most stable compound in the 43 mutant protein systems. We further used DRN metric analysis to define cold spots as being those regions that are least impacted, or not impacted, by mutations. One crucial outcome of this study was to show that EC centrality hubs form an allosteric communication path between the allosteric ligand binding site to the active site going through the interface residues of Domain I and II; and this path was either weakened or lost in the presence of some of the mutations. Overall, the results of this study revealed crucial aspects that need to be considered in drug discovery in COVID-19 specifically and in general for rational computational drug design purposes.


1994 ◽  
Vol 64 ◽  
pp. 168
Author(s):  
Kazumi Ota ◽  
Katsumi Fujimoto ◽  
Ikuo Imamura ◽  
Hideyuki Hayashi ◽  
Hiroyuki Kagamiyama ◽  
...  

2020 ◽  
Vol 118 (3) ◽  
pp. 583a
Author(s):  
Dubem Onyejegbu ◽  
Jessica Shepherd ◽  
Elham Pirayesh ◽  
Akash Pandhare ◽  
Zackary R. Gallardo ◽  
...  

Endocrinology ◽  
1997 ◽  
Vol 138 (5) ◽  
pp. 2011-2020 ◽  
Author(s):  
Raffaella Borroni ◽  
Zheng Liu ◽  
Evan R. Simpson ◽  
Margaret M. Hinshelwood

SLEEP ◽  
2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Sarah Ly ◽  
Ewa Strus ◽  
Nirinjini Naidoo

Abstract Homer proteins mediate plasticity and signaling at the postsynaptic density of neurons and are necessary for sleep and synaptic remodeling during sleep. The goal of this study was to investigate the mechanisms of sleep regulation by Homer signaling. Using the Drosophila animal model, we demonstrate that knockdown of Homer specifically in the brain reduces sleep and that Drosophila Homer binds to the sole Drosophila mGluR, known as DmGluRA. This is the first evidence that DmGluRA, which bears greatest homology to group II mammalian metabotropic glutamate receptors (mGluRs), shares functional homology with group I mGluRs which couple to Homer proteins in mammals. As sleep is associated with the physical dissociation of Homer and mGluRs proteins at the synapse, we sought to determine the functional necessity of Homer × DmGluRA interaction in sleep regulation. Using the CRISPR/Cas9 gene editing system, we generated a targeted amino acid replacement of the putative binding site for Homer on DmGluRA to prevent Homer and DmGluRA protein binding. We found that loss of the conserved proline-rich PPXXF sequence on DmGluRA reduces Homer/DmGluRA associations and significantly reduces sleep amount. Thus, we identify a conserved mechanism of synaptic plasticity in Drosophila and demonstrate that the interaction of Homer with DmGluRA is necessary to promote sleep.


2013 ◽  
Vol 56 (6) ◽  
pp. 2415-2428 ◽  
Author(s):  
Rajesh Karuturi ◽  
Rami A. Al-Horani ◽  
Shrenik C. Mehta ◽  
David Gailani ◽  
Umesh R. Desai

Sign in / Sign up

Export Citation Format

Share Document