scholarly journals Direct orange 26 dye environmental degradation: experimental studies (UV, mass, and thermal) in comparison with computational exploration hydrogen bonding analysis of TD-DFT calculations

2021 ◽  
Vol 27 (11) ◽  
Author(s):  
Zahraa A. Abo-Ayad ◽  
Mohamed A. Zayed ◽  
Mahmoud A. Noamaan
2021 ◽  
Author(s):  
Zahraa A. M. Abo-Ayad ◽  
Mohamed A. Zayed ◽  
Mahmoud A Noamaan

Abstract The importance of this study stems from, it concentrates on new approach applying both practical and theoretical aspects to study structure stability of Direct orange dye 26 (DO26) as an important dye widely used for dyeing of cotton or viscose for red orange direct printing. The stable dyes are so difficult to remove, decolorized and/ or degrade, in pure solution or in wastewater samples, without using powerful removal environmental techniques electrochemical oxidations suggest and efficiently used in our Lab. Therefore, it is very important to compare between practical thermal and mass results as efficient techniques in studying dye stability, in comparison with theoretical results using Gaussian program for structural stability identification of DO26 dye, via careful inspection of various phenomena detected in its two symmetrical arms around urea center. Direct orange dye 26 (DO26) structure has been studied applying both practical spectroscopic and theoretical investigations. DFT-B3LYP/6-311++G(d,p) calculations and the electronic vibrational properties are performed to investigate its structure stability and consequently its degradation and removal from its environmental media. Correlation is found between experimental and calculated data. An intra-molecular hydrogen bonding interaction had been detected and characterized in dye skeleton. The hydrogen bonding present in the dye structure affecting its vibrational properties had been discussed. Natural population analysis like HOMO and LUMO and high quality molecular electrostatic potential plots along with various electronics had been presented at the same level of theory. Chemical reactivity descriptors from conceptual density functional theory point of view, structure activity relationship descriptor were obtained. The experimental UV/Visible, FT-IR, mass and GC-mass spectral data of the dye DO26 (D1) had been presented. These data had been supported by TD-DFT calculations to simulate the experimental spectra with computing the natural transition orbitals (NTO) and the orbital composition. The variation of charge transfer length (Δr) and variation in its dipole moment with respect to ground state (ΔmCT) had been computed in order to study the charge redistribution due to the excitations. Actually there is a problem that, degradation of this dye in wastewater by different techniques leads to various unknown fragments but on using theoretical possibilities it can be expected what happened in practical work.


2021 ◽  
Author(s):  
Mohamed A. Zayed ◽  
Mahmoud A Noamaan ◽  
Zahraa A.M Abo-Ayad

Abstract The importance of this study stems from, it concentrates on new approach applying both practical and theoretical aspects to study structure of Direct orange dye 26 (DO-26) as an important dye widely used for dyeing of cotton or viscose for red orange direct printing. It also can be used for silk, wool, polyvinyl alcohol, polyamide fiber fabric and pulp dyeing. It proficiently compare practical with theoretical results of structural identification of the given important dye, via carful inspection of various phenomena detected in its two symmetrical arms around urea center. Direct orange dye 26 (DO-26) structure has been studied applying both practical spectroscopic and theoretical investigations. DFT-B3LYP/6-311++G(d,p) calculations are performed to investigate its structure, and the electronic vibrational properties. Correlation is found between experimental and calculated data. An intra-molecular hydrogen bonding interaction had been detected and characterized in dye skeleton using Atoms-in-molecule analysis employment. The hydrogen bonding present in the dye structure affecting its vibrational properties had been discussed. Natural population analysis like HOMO and LUMO and high quality molecular electrostatic potential plots along with various electronics had been presented at the same level of theory. Chemical reactivity descriptors from conceptual density functional theory point of view, structure activity relationship descriptor were obtained. The experimental UV/Visible and FT-IR spectral data of the dye DO-26 (D1) had been presented. These data had been supported by TD-DFT calculations to simulate the experimental spectra with computing the natural transition orbitals (NTO) and the orbital composition. The variation of charge transfer length (Δr) and variation in its dipole moment with respect to ground state (ΔmCT) had been computed in order to study the charge redistribution due to the excitations. Actually there is a problem that, degradation of this dye in wastewater by different techniques leads to various unknown fragments but on using theoretical possibilities it can be expected what happened in practical work.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1430
Author(s):  
Mamduh J. Aljaafreh ◽  
Saradh Prasad ◽  
Mohamad S. AlSalhi ◽  
Raya H. Alhandel ◽  
Reem A. Alsaigh

In this work, we investigate the TD-DFT simulation, optical, and mirrorless laser properties of conjugated polymer (CP) Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-diphenylene-vinylene-2-methoxy-5-{2-ethylhexyloxy}-benzene)], also known as (PFO-co-PPV-MEHB) or ADS125GE. TD-DFT calculations were performed for three monomer units with truncated tails using time-dependent density functional theory (TD-DFT) calculations. The calculations showed a highest occupied and lowest unoccupied molecular orbital (HOMO-LUMO) structure and a very high oscillator strength of 6.434 for the singlet-singlet transition at 374.43 nm. Experimentally, the absorption and fluorescence spectra were examined at various concentrations in verity of solvents, such as benzene, toluene, and hexane. The experimental results obtained in hexane were comparable with theoretical UV-VIS spectra calculated under vacuum. Amplified spontaneous emission (ASE) spectra peaked at approximately 509 nm for CO PFO-co-PPV-MEHB in solution and were obtained at suitable concentrations and pump energies. Additionally, the photochemical stability of this CP and coumarin (C510) were compared. Time-resolved spectroscopy (TRS) studies with a sub-nanosecond resolution were performed for the CO under various pump energies. These results showed the excited state dynamics and single-pass optical gain of CO PFO-co-PPV-MEHB.


2014 ◽  
Vol 16 (33) ◽  
pp. 17828-17834 ◽  
Author(s):  
Yang Yang ◽  
Lei Liu ◽  
Junsheng Chen ◽  
Keli Han

The spontaneous and collision-assisted hydrogen-atom abstracting reaction dynamics of triplet benzil are investigated through a combination of transient absorption spectroscopy with TD-DFT calculations.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1298
Author(s):  
Ilya G. Shenderovich ◽  
Gleb S. Denisov

The isotopically enriched cyanide anion, (13C≡15N)−, has a great potential as the NMR probe of non-covalent interactions. However, hydrogen cyanide is highly toxic and can decompose explosively. It is therefore desirable to be able to theoretically estimate any valuable results of certain experiments in advance in order to carry out experimental studies only for the most suitable molecular systems. We report the effect of hydrogen bonding on NMR properties of 15N≡13CH···X and 13C≡15NH···X hydrogen bonding complexes in solution, where X = 19F, 15N, and O=31P, calculated at the ωB97XD/def2tzvp and the polarizable continuum model (PCM) approximations. In many cases, the isotropic 13C and 15N chemical shieldings of the cyanide anion are not the most informative NMR properties of such complexes. Instead, the anisotropy of these chemical shieldings and the values of scalar coupling constants, including those across hydrogen bonds, can be used to characterize the geometry of such complexes in solids and solutions. 1J(15N13C) strongly correlates with the length of the N≡C bond.


RSC Advances ◽  
2017 ◽  
Vol 7 (81) ◽  
pp. 51538-51545 ◽  
Author(s):  
Ying Lv ◽  
Xi Kang ◽  
Sha Yang ◽  
Tao Chen ◽  
Ao Liu ◽  
...  

The effect of ligands and dopants on AuxM13−xNCs was studied by DFT and TD-DFT calculations.


Author(s):  
Serdal Kaya ◽  
Hatice Gülten Aydın ◽  
Selbi Keskin ◽  
Zeynep Ekmekci ◽  
Nurettin Menges

Sign in / Sign up

Export Citation Format

Share Document