Effect of installation errors on beveloid gears’ precision ground by cone-shape worm wheel

2019 ◽  
Vol 83 (3) ◽  
pp. 727-739
Author(s):  
Bing Cao ◽  
Guolong Li
Keyword(s):  
Procedia CIRP ◽  
2016 ◽  
Vol 43 ◽  
pp. 124-129 ◽  
Author(s):  
C. Brecher ◽  
C. Löpenhaus ◽  
J. Brimmers
Keyword(s):  

2011 ◽  
Vol 121-126 ◽  
pp. 1744-1748
Author(s):  
Xiang Yang Jin ◽  
Tie Feng Zhang ◽  
Li Li Zhao ◽  
He Teng Wang ◽  
Xiang Yi Guan

To determine the efficiency, load-bearing capacity and fatigue life of beveloid gears with intersecting axes, we design a mechanical gear test bed with closed power flow. To test the quality of its structure and predict its overall performance, we establish a three-dimensional solid model for various components based on the design parameters and adopt the technology of virtual prototyping simulation to conduct kinematics simulation on it. Then observe and verify the interactive kinematic situation of each component. Moreover, the finite element method is also utilized to carry out structural mechanics and dynamics analysis on some key components. The results indicate that the test bed can achieve the desired functionality, and the static and dynamic performance of some key components can also satisfy us.


2004 ◽  
Vol 39 (8) ◽  
pp. 883-892 ◽  
Author(s):  
Guixian Li ◽  
Lixiao Wen Jianmin ◽  
Zhang Xin ◽  
Liu Yu
Keyword(s):  

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Alessio Artoni ◽  
Massimo Guiggiani

The teeth of ordinary spur and helical gears are generated by a (virtual) rack provided with planar generating surfaces. The resulting tooth surface shapes are a circle-involute cylinder in the case of spur gears, and a circle-involute helicoid for helical gears. Advantages associated with involute geometry are well known. Beveloid gears are often regarded as a generalization of involute cylindrical gears involving one additional degree-of-freedom, in that the midplane of their (virtual) generating rack is inclined with respect to the axis of the gear being generated. A peculiarity of their generation process is that the motion of the generating planar surface, seen from the fixed space, is a rectilinear translation (while the gear blank is rotated about a fixed axis); the component of such translation that is orthogonal to the generating plane is the one that ultimately dictates the shape of the generated, envelope surface. Starting from this basic fact, we set out to revisit this type of generation-by-envelope process and to profitably use it to explore peculiar design layouts, in particular for the case of motion transmission between skew axes (and intersecting axes as a special case). Analytical derivations demonstrate the possibility of involute helicoid profiles (beveloids) transmitting motion between skew axes through line contact and, perhaps more importantly, they lead to the derivation of designs featuring insensitivity of the transmission ratio to all misalignments within relatively large limits. The theoretical developments are confirmed by various numerical examples.


2021 ◽  
Vol 111 (05) ◽  
pp. 277-281
Author(s):  
Marius Willecke ◽  
Jens Brimmers ◽  
Christian Brecher

In diesem Beitrag wird die Konzeptionierung und konstruktive Umsetzung eines Back-to-Back-Verspannungsprüfstandes für Tragfähigkeitsuntersuchungen von Beveloidverzahnungen beschrieben. Im Rahmen der Konzeptionierung werden verschiedene Möglichkeiten der Umsetzung erarbeitet und bewertet.   This paper describes the conceptual design and constructive implementation of a back-to-back test rig for load capacity investigations of beveloid gears. In the course of the conceptual design, various options for implementation are developed and evaluated.


2018 ◽  
Vol 9 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Seong Han Kim

Abstract. This study proposes a worm gear efficiency model considering misalignment in electric power steering systems. A worm gear is used in Column type Electric Power Steering (C-EPS) systems and an Anti-Rattle Spring (ARS) is employed in C-EPS systems in order to prevent rattling when the vehicle goes on a bumpy road. This ARS plays a role of preventing rattling by applying preload to one end of the worm shaft but it also generates undesirable friction by causing misalignment of the worm shaft. In order to propose the worm gear efficiency model considering misalignment, geometrical and tribological analyses were performed in this study. For geometrical analysis, normal load on gear teeth was calculated using output torque, pitch diameter of worm wheel, lead angle and normal pressure angle and this normal load was converted to normal pressure at the contact point. Contact points between the tooth flanks of the worm and worm wheel were obtained by mathematically analyzing the geometry, and Hertz's theory was employed in order to calculate contact area at the contact point. Finally, misalignment by an ARS was also considered into the geometry. Friction coefficients between the tooth flanks were also researched in this study. A pin-on-disk type tribometer was set up to measure friction coefficients and friction coefficients at all conditions were measured by the tribometer. In order to validate the worm gear efficiency model, a worm gear was prepared and the efficiency of the worm gear was predicted by the model. As the final procedure of the study, a worm gear efficiency measurement system was set and the efficiency of the worm gear was measured and the results were compared with the predicted results. The efficiency considering misalignment gives more accurate results than the efficiency without misalignment.


Sign in / Sign up

Export Citation Format

Share Document