Altered Belowground Carbon Cycling Following Land-Use Change to Perennial Bioenergy Crops

Ecosystems ◽  
2013 ◽  
Vol 16 (3) ◽  
pp. 508-520 ◽  
Author(s):  
Kristina J. Anderson-Teixeira ◽  
Michael D. Masters ◽  
Christopher K. Black ◽  
Marcelo Zeri ◽  
Mir Zaman Hussain ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 410 ◽  
Author(s):  
Eeshan Kumar ◽  
Dharmendra Saraswat ◽  
Gurdeep Singh

Researchers and federal and state agency officials have long been interested in evaluating location-specific impact of bioenergy energy crops on water quality for developing policy interventions. This modeling study examines long-term impact of giant miscanthus and switchgrass on water quality in the Cache River Watershed (CRW) in Arkansas, United States. The bioenergy crops were simulated on marginal lands using two variants of a Soil and Watershed Assessment Tool (SWAT) model. The first SWAT variant was developed using a static (single) land-use layer (regular-SWAT) and for the second, a dynamic land-use change feature was used with multiple land use layers (location-SWAT). Results indicated that the regular-SWAT predicted larger losses for sediment, total phosphorus and total nitrogen when compared to location-SWAT at the watershed outlet. The lower predicted losses from location-SWAT were attributed to its ability to vary marginal land area between 3% and 11% during the 20-year modeling period as opposed to the regular-SWAT that used a fixed percentage of marginal land area (8%) throughout the same period. Overall, this study demonstrates that environmental impacts of bioenergy crops were better assessed using the dynamic land-use representation approach, which would eliminate any unintended prediction bias in the model due to the use of a single land use layer.


GCB Bioenergy ◽  
2015 ◽  
Vol 8 (5) ◽  
pp. 925-940 ◽  
Author(s):  
Marta Dondini ◽  
Mark I. A. Richards ◽  
Mark Pogson ◽  
Jon McCalmont ◽  
Julia Drewer ◽  
...  

2019 ◽  
Vol 120 ◽  
pp. 396-403 ◽  
Author(s):  
D.J. Krol ◽  
M.B. Jones ◽  
M. Williams ◽  
Ó. Ní Choncubhair ◽  
G.J. Lanigan

2006 ◽  
Vol 35 (4) ◽  
pp. 1348-1363 ◽  
Author(s):  
Peter B. Woodbury ◽  
Linda S. Heath ◽  
James E. Smith

2009 ◽  
Vol 23 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Elena Shevliakova ◽  
Stephen W. Pacala ◽  
Sergey Malyshev ◽  
George C. Hurtt ◽  
P. C. D. Milly ◽  
...  

2021 ◽  
Author(s):  
Caspar Donnison ◽  
Robert Holland ◽  
Zoe Harris ◽  
Felix Eigenbrod ◽  
Gail Taylor

<p>Whilst dedicated bioenergy crops with non-food uses are currently sparsely deployed across the world, most future energy pathways necessitate a sizeable scale-up of 100-500 million ha of land converted to these crops to provide both energy substitutes for fossil fuels and negative emissions through bioenergy with carbon capture and storage (BECCS). In the face of expected bioenergy expansion, understanding the environmental and societal impact of this land-use change is important in determining where and how bioenergy crops should be deployed, and the trade-offs and co-benefits to the environment and society. Here we review the existing literature on two difficult to measure impacts which could prove critical to the future wide-scale acceptability of global bioenergy cropping in the temperate environment: biodiversity and amenity value. We focus on agricultural landscapes, since this is where large-scale bioenergy planting may be required. A meta-analysis of 42 studies on the biodiversity impacts of land-use change from either arable and grassland to bioenergy crops found strong benefits for bird abundance (+ 109 % ± 24 %), bird species richness (+ 100 % ± 31 %), arthropod abundance (+ 299 % ± 76 %), microbial biomass (+ 77 % ± 24 %), and plant species richness (+ 25 % ± 22 %) and a non-significant upward trend in earthworm abundance. Land-use change from arable land led to particularly strong benefits, providing an insight into how future land-use change to bioenergy crops could support biodiversity. Evidence concerning the impact of bioenergy crops on landscape amenity value highlighted the importance of landscape context, planting strategies, and landowner motivations in determining amenity values, with few generalizable conclusions. In this first meta-analysis to quanitfy the impacts of land-use change to bioenergy on on biodiversity and amenity,  we have demonsrated  improved farm-scale biodiversity on agricultural land but also demonstrated the lack of knowledge concerning public response to bioenergy crops which could prove crucial to the political feasibility of bioenergy policies such as BECCS.</p>


2021 ◽  
Author(s):  
Caspar Donnison ◽  
Robert A Holland ◽  
Zoe M Harris ◽  
Felix Eigenbrod ◽  
Gail Taylor

Most decarbonization scenarios of energy systems necessitate more than 500 Mha of land converted to non-food bioenergy crops to provide both energy substitutes for fossil fuels and negative emissions through bioenergy with carbon capture and storage (BECCS). Understanding the environmental and societal impact of this significant land-use change (LUC) is important in determining where and how bioenergy crops should be deployed, and the trade-offs and co-benefits to the environment and society. Here, we use two systematic reviews and a meta-analysis to assess the existing literature on impacts that are likely to have an important effect on public perceptions of the acceptability of such land use change: biodiversity and amenity value. We focus on the impact of LUC to non-food bioenergy crops on agricultural landscapes, where large-scale bioenergy planting may be required. Our meta-analysis finds strong benefits for biodiversity overall (up 75 % ± 13 %), with particular benefits for bird abundance (+ 81 % ± 32 %), bird species richness (+ 100 % ± 31 %), arthropod abundance (+ 52 % ± 36 %), microbial biomass (+ 77 % ± 24 %), and plant species richness (+ 25 % ± 22 %), when land moves out of either arable crops or grassland to bioenergy production. Conversions from arable land to energy trees led to particularly strong benefits, providing an insight into how future LUC to bioenergy crops could support biodiversity. There were inadequate data to complete a meta-analysis on the effects of bioenergy crops on landscape amenity value, and few generalizable conclusions from systematic review of the literature, however, findings highlight the importance of landscape context and planting strategies in determining amenity values. Our findings demonstrate improved farm-scale biodiversity on agricultural land with bioenergy crops, but also limited knowledge concerning public response to this land use change which could prove crucial to the effective deployment of bioenergy.


Sign in / Sign up

Export Citation Format

Share Document