Three-dimensional dynamic optical manipulation by combining a diffractive optical element and a spatial light modulator

2008 ◽  
Vol 15 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Mingjie Zheng ◽  
Yusuke Ogura ◽  
Jun Tanida
Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3850 ◽  
Author(s):  
Svetlana N. Khonina ◽  
Sergey V. Karpeev ◽  
Alexey P. Porfirev

We propose a new type of a wavefront aberration sensor, that is, a Zernike matched multichannel diffractive optical filter, which performs consistent filtering of phase distributions corresponding to Zernike polynomials. The sensitivity of the new sensor is theoretically estimated. Based on the theory, we develop recommendations for its application. Test wavefronts formed using a spatial light modulator are experimentally investigated. The applicability of the new sensor for the fine-tuning of a laser collimator is assessed.


2015 ◽  
Vol 14 (4) ◽  
pp. 041303 ◽  
Author(s):  
Junchang Li ◽  
Yu-Chih Lin ◽  
Han-Yen Tu ◽  
Jinbin Gui ◽  
Chongguang Li ◽  
...  

2022 ◽  
Author(s):  
Karuna Sindhu Malik ◽  
Bosanta Ranjan Boruah

Abstract A dynamic holographic optical trap uses a dynamic diffractive optical element such as a liquid crystal spatial light modulator to realize one or more optical traps with independent controls. Such holographic optical traps provide a number of flexibilities and conveniences useful in various applications. One key requirement for such a trap is the ability to move the trapped microscopic object from one point to the other with the optimal velocity. In this paper we develop a nematic liquid crystal spatial light modulator based holographic optical trap and experimentally investigate the optimal velocity feasible for trapped beads of different sizes, in such a trap. Our results show that the achievable velocity of the trapped bead is a function of size of the bead, step size, interval between two steps and power carried by the laser beam. We observe that the refresh rate of a nematic liquid crystal spatial light modulator is sufficient to achieve an optimal velocity approaching the theoretical limit in the respective holographic trap for beads with radius larger than the wavelength of light.


2004 ◽  
Author(s):  
Aneta Michalkiewicz ◽  
Malgorzata Kujawinska ◽  
Tomasz Kozacki ◽  
Xinghua Wang ◽  
Philip J. Bos

2018 ◽  
Vol 57 (24) ◽  
pp. 7060 ◽  
Author(s):  
Sensen Li ◽  
Lei Ding ◽  
Pengyuan Du ◽  
Zhiwei Lu ◽  
Yulei Wang ◽  
...  

2005 ◽  
Vol 45 (28) ◽  
pp. 3432-3444 ◽  
Author(s):  
Enrique J. Fernández ◽  
Boris Považay ◽  
Boris Hermann ◽  
Angelika Unterhuber ◽  
Harald Sattmann ◽  
...  

2006 ◽  
Vol 18 (6) ◽  
pp. 692-697 ◽  
Author(s):  
Jesper Glückstad ◽  
◽  
Peter John Rodrigo ◽  
Ivan Perch-Nielsen

Three-dimensional light structures can be created by modulating the spatial phase and polarization properties of the laser light. A particularly promising technique is the Generalized Phase Contrast (GPC) method invented and patented at Risø National Laboratory. Based on the combination of programmable spatial light modulator devices and an advanced graphical user-interface the GPC method enables real-time, interactive and arbitrary control over the dynamics and geometry of synthesized light patterns. Recent experiments have shown that GPC-driven micro-manipulation provides a unique technology platform for fully user-guided assembly of a plurality of particles in a plane, control of particle stacking along the beam axis, manipulation of multiple hollow beads, and the organization of living cells into three-dimensional colloidal structures. These demonstrations illustrate that GPC-driven micro-manipulation can be utilized not only for the improved synthesis of functional microstructures but also for non-contact and parallel actuation crucial for sophisticated opto- and micro-fluidic based lab-on-a-chip systems.


Sign in / Sign up

Export Citation Format

Share Document