spatial beam
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 53)

H-INDEX

18
(FIVE YEARS 5)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahra Mohammadzahery ◽  
Maryam Jandaghi ◽  
Ebrahim Aghayari ◽  
Hasan Nabavi

AbstractIn this paper, we experimentally demonstrate that a nonlinear Kerr effect in suitable coupling conditions can introduce a spatially self-cleaned output beam for a few-mode step-index fiber. The impact of the distribution of the initial excited modes on spatial beam self-cleaning has been demonstrated. It is also shown experimentally that for specific initial conditions, the output spatial pattern of the pulsed laser can be reshaped into the LP11 mode due to nonlinear coupling among the propagating modes. Self-cleaning into LP11 mode required higher input powers with respect to the power threshold for LP01 mode self-cleaning. Our experimental results are in agreement with the results of numerical calculations.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chen Daihai ◽  
Zhou Shuai ◽  
Xu Shizhan ◽  
Li Zheng ◽  
Fang Yilin

Taking the simply supported box girder bridge of high-speed railway as an example, the effect of cross-sectional decentralized centre of mass and shear on the spatial beam element stiffness matrix was theoretically derived. Based on the vehicle-bridge coupling vibration analysis method of the railway bridge, an analysis program of vehicle-bridge coupling vibration for the high-speed railway was compiled, and its reliability was verified through an example analysis. On this basis, considering the cross-sectional decentralized centre of mass and shear, the influence factors of vehicle-bridge coupling vibration response were studied, which included the offset distance of the beam section’s mass and shear centre, offset distance of track centreline, vehicle weight, and vehicle speed. The results show that the additional items of the spatial beam element stiffness matrix are generated by the torsion effect when the cross-sectional decentralized centre of mass and shear is considered, and it will affect the lateral and vertical stiffness of the element. The cross-sectional decentralized centre of mass and shear has a significant effect on the lateral dynamic response of the bridge’s mid-span, but the influence on the vertical response of the bridge and the dynamic response of the car body is small. The main influence factors of the lateral dynamic response of the bridge are the vertical offset distance of the beam section’s centre of mass and shear, the lateral offset distance of the track centreline, and the vehicle weight.


Photonics ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 479
Author(s):  
Xiao-Jun Lin ◽  
Yu-Xin Gao ◽  
Jin-Gan Long ◽  
Jia-Wen Wu ◽  
Xiang-Yue Li ◽  
...  

We report the spatial beam self-cleaning in bi-tapered conventional multimode fibers (MMFs) with different tapered lengths. Through the introduction of the bi-tapered structure in MMFs, the input beam with poor beam quality from a high-power fiber laser can be converted to a centered, bell-shaped beam in a short length, due to the strengthened nonlinear modes coupling. It is found that the bi-tapered MMF with longer tapered length at the same waist diameter shows better beam self-cleaning effect and larger spectral broadening. The obtained results offer a new method to improve the beam quality of high-power laser at low cost. Furthermore, it may be interesting for manufacturing bi-tapered MMF-based devices to obtain the quasi-fundamental mode beam in spatiotemporal mode-locked fiber lasers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nawell Ould Moussa ◽  
Tigran Mansuryan ◽  
Charles-Henri Hage ◽  
Marc Fabert ◽  
Katarzyna Krupa ◽  
...  

AbstractBeam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers. We experimentally demonstrate that the beam brightness increase, induced by self-cleaning, enables two and three-photon imaging of biological samples with high spatial resolution. Temporal pulse shortening accompanying spatial beam clean-up enhances the output peak power, hence the efficiency of nonlinear imaging. We also show that spatiotemporal supercontinuum (SC) generation is well-suited for large-band NF imaging in visible and infrared domains. We substantiated our findings by multiphoton fluorescence imaging in both microscopy and endoscopy configurations.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 354
Author(s):  
Leila Graini ◽  
Bülend Ortaç

This paper aims to pave the way towards the demonstration of spatiotemporal similariton pulses’ evolution in passive multimode fibers with Raman amplification. We numerically present this issue in graded-index and step-index multimode fibers and provide a first look at the complex spatiotemporal dynamics of similariton pulses. The results showed that the similariton pulses could be generated in both multimode fibers. The temporal and spectral evolution of the pulses can be characterized as parabolic shapes with linear chirp and kW peak power. By compressing these, high-energy femtoseconds pulses can be obtained, starting initial picosecond pulses. A spatial beam profile could be preserved in both multimode fibers with the most energy coupled to the fundamental mode. Specifically, the similariton pulses’ generation with Raman amplification in a graded-index multimode fiber improves the spatial beam self-cleaning process under the different initial modes’ excitation. The observation of a new beam self-cleaning process is another attractor feature of propagation in graded-index multimode fibers.


2021 ◽  
Author(s):  
John Linden ◽  
Sharona Cohen ◽  
Yuval Berg ◽  
itay peled ◽  
Zvi Kotler ◽  
...  

Author(s):  
Christophe Moser ◽  
Ugur Tegin ◽  
Babak Rahmani ◽  
Eirini Kakkava ◽  
Demetri Psaltis

2021 ◽  
Author(s):  
Jiujiu liang ◽  
CHONGYU WANG ◽  
Haiou Lu ◽  
Xiaohao Wang ◽  
Kai Ni ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yann Leventoux ◽  
Geoffroy Granger ◽  
Katarzyna Krupa ◽  
Tigran Mansuryan ◽  
Marc FABERT ◽  
...  

2021 ◽  
Author(s):  
Nawell OULD-MOUSSA ◽  
Tigran Mansuryan ◽  
Charles-Henri Hage ◽  
Marc Fabert ◽  
Katarzyna Krupa ◽  
...  

Abstract Beam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers. We experimentally demonstrate that the beam brightness increase, induced by self-cleaning, enables two and three-photon imaging of biological samples with high spatial resolution. Temporal pulse shortening accompanying spatial beam clean-up enhances the output peak power, hence the efficiency of nonlinear imaging. We also show that spatiotemporal supercontinuum (SC) generation is well-suited for large-band NF imaging in visible and infrared domains. We substantiated our findings by multiphoton fluorescence imaging in both microscopy and endoscopy configurations.


Sign in / Sign up

Export Citation Format

Share Document