scholarly journals Hemolysis and von Willebrand factor degradation in mechanical shuttle shear flow tester

Author(s):  
Yasuyuki Shiraishi ◽  
Yuma Tachizaki ◽  
Yusuke Inoue ◽  
Masaki Hayakawa ◽  
Akihiro Yamada ◽  
...  

AbstractChronic blood trauma caused by the shear stresses generated by mechanical circulatory support (MCS) systems is one of the major concerns to be considered during the development of ventricular assist devices. Large multimers with high-molecular-weight von Willebrand factor (VWF) are extended by the fluid forces in a shear flow and are cleaved by ADAMTS13. Since the mechanical revolving motions in artificial MCSs induce cleavage in large VWF multimers, nonsurgical bleeding associated with the MCS is likely to occur after mechanical hemodynamic support. In this study, the shear stress (~ 600 Pa) and exposure time related to hemolysis and VWF degradation were investigated using a newly designed mechanical shuttle shear flow tester. The device consisted of a pair of cylinders facing the test section of a small-sized pipe; both the cylinders were connected to composite mechanical heads with a sliding-sleeve structure for axial separation during the withdrawing motion. The influence of exposure time, in terms of the number of stress cycles, on hemolysis and VWF degradation was confirmed using fresh goat blood, and the differences in the rates of dissipation of the multimers were established. The plasma-free hemoglobin levels showed a logarithmic increase corresponding to the number of cycles, and the dissipation of large VWF multimers occurred within a few seconds under high shear stress flow conditions.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2112-2112
Author(s):  
Xiaoyun Fu ◽  
Ryan P. Gallagher ◽  
Dominic Chung ◽  
Junmei Chen ◽  
José A. López

Abstract Abstract 2112 The interaction between von Willebrand factor (VWF) and the platelet glycoprotein Ib-IX-V complex mediates the first step of platelet adhesion to the vessel wall at sites of injury in the hemostatic response to blood loss. This interaction is also involved in pathologic thrombosis, the most extreme case being thrombotic thrombocytopenic purpura, but the interaction has been proposed to have important pathogenic roles in disparate syndromes such as sepsis, HELLP syndrome, antiphospholipid syndrome, acute lung injury, sickle cell anemia, and cerebral malaria. These syndromes have in common an association with severe inflammation, one of the consequences of which is production of oxidants, in particular by neutrophils. We recently showed that one of the most potent neutrophil oxidants, hypochlorous acid (HOCl), which is produced by the myeloperoxidase-catalyzed reaction of H2O2 with chloride ion, markedly reduces ADAMTS13 proteolysis of VWF by oxidizing M1606 at the ADAMTS13 cleavage site within the A2 domain of VWF (Blood, 115(3) 706-12, 2010). In that study, M1606 present in a substrate A2 peptide was readily oxidized by HOCl, but only minimally oxidized in multimeric plasma VWF, except in the presence of the denaturing agent urea. As this requirement resembled the requirement of urea for ADAMTS13 proteolysis of plasma VWF, we wondered whether the application of shear stress would similarly enhance M1606 oxidation by HOCl. Using a system containing 25 nM MPO (a plasma concentration often seem in inflammatory conditions) and varying concentrations of H2O2, we found that application of 0.6 dynes/cm2 shear stress through a closed circuit of plastic tubing rendered M1606 much more sensitive to oxidation: 80% oxidized within 1 hr. This suggestion of shear-induced unfolding and enhanced oxidation was verified when we examined 7 other methionine residues in the A1A2A3 region of VWF, the region containing the binding sites for platelets and collagen and the ADAMTS13 cleavage site. The Met residues were variably sensitive to oxidation, but all became increasingly oxidized over time in the presence of shear stress. Although the shear stresses we used in this experiment are far below the shear stress considered necessary to unfold even very large VWF multimers, the VWF solution also experienced constant elongational flow generated by a peristaltic pump, necessitating flow acceleration through the region narrowed by the rollers. Elongational flow can impart up to 100-fold more tensile stress to suspended VWF than the constant shear stress (Biophys. J., 98 L35, 2010). Two other findings favor the interpretation that oxidation of the A1A2A3 region is facilitated by domain unfolding. First, we further separated the oxidized VWF by gel-filtration into large, intermediate, and small multimeric fractions and found that methionine oxidation was much more prevalent in the fraction with the largest multimers and rare in the fraction with the smallest multimers. Second, we found that ristocetin, a VWF modulator that simulates the effect of shear stress on VWF, also accelerated oxidation of M1606. In functional tests, we found that HOCl-oxidized plasma VWF agglutinated fixed platelets at concentrations of ristocetin that induced minimal agglutination using unoxidized VWF. These findings have several important clinical implications. First, inflammatory conditions will not only activate endothelial cells and induce release of VWF, especially the largest and most adhesive forms (ultralarge VWF), the oxidants produced from endothelial cells themselves and from the neutrophil respiratory burst will render the VWF resistant to proteolysis. Second, these same oxidants will also convert the largest preexisting plasma VWF multimers that were previously rendered quiescent by ADAMTS13, into hyperfunctional and uncleavable forms. All of these mechanisms converge to generate a highly prothrombotic state, perhaps initially evolved as a mechanism to trap and isolate microorganisms, but which also has the potential to cause tremendous harm to those affected by these inflammatory conditions. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Katharine H. Fraser ◽  
Tao Zhang ◽  
M. Ertan Taskin ◽  
Bartley P. Griffith ◽  
Zhongjun J. Wu

Ventricular assist devices (VADs) have already helped many patients with heart failure but have the potential to assist more patients if current problems with blood damage (hemolysis, platelet activation, thrombosis and emboli, and destruction of the von Willebrand factor (vWf)) can be eliminated. A step towards this goal is better understanding of the relationships between shear stress, exposure time, and blood damage and, from there, the development of numerical models for the different types of blood damage to enable the design of improved VADs. In this study, computational fluid dynamics (CFD) was used to calculate the hemodynamics in three clinical VADs and two investigational VADs and the shear stress, residence time, and hemolysis were investigated. A new scalar transport model for hemolysis was developed. The results were compared with in vitro measurements of the pressure head in each VAD and the hemolysis index in two VADs. A comparative analysis of the blood damage related fluid dynamic parameters and hemolysis index was performed among the VADs. Compared to the centrifugal VADs, the axial VADs had: higher mean scalar shear stress (sss); a wider range of sss, with larger maxima and larger percentage volumes at both low and high sss; and longer residence times at very high sss. The hemolysis predictions were in agreement with the experiments and showed that the axial VADs had a higher hemolysis index. The increased hemolysis in axial VADs compared to centrifugal VADs is a direct result of their higher shear stresses and longer residence times. Since platelet activation and destruction of the vWf also require high shear stresses, the flow conditions inside axial VADs are likely to result in more of these types of blood damage compared with centrifugal VADs.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 625-628 ◽  
Author(s):  
DM Peterson ◽  
NA Stathopoulos ◽  
TD Giorgio ◽  
JD Hellums ◽  
JL Moake

Different types of platelets in various types of plasma were subjected to levels of shear stress that produce irreversible platelet aggregation in normal platelet-rich plasma (PRP). At shear stresses of 90 or 180 dyne/cm2 applied for 30 seconds or five minutes, aggregation was either absent or only transient and reversible using severe von Willebrand's disease (vWD) PRP (less than 1% von Willebrand factor, vWF); Bernard-Soulier syndrome (BSS) PRP (platelets deficient in the membrane glycoprotein Ib, GPIb); normal PRP plus monoclonal antibody (MoAb) to GPIb; thrombasthenic PRP (platelets deficient in membrane glycoprotein IIb-IIIa complex, GPIIb-IIIa); and normal PRP plus MoAb to GPIIb-IIIa. Shear-induced aggregation was inhibited under the above conditions, even though the platelets were activated to release their granular contents. Sheared normal platelets in vWD plasma aggregated in response to added vWF. These studies demonstrate that the formation of stable platelet aggregates under conditions of high shear requires vWF and the availability of both GPIb and GPIIb-IIIa on platelet membranes. The experiments demonstrate that vWF-platelet interactions can occur in the absence of artificial agonists or chemical modification of vWF. They suggest a possible mechanism for platelet aggregation in stenosed or partially obstructed arterial vessels in which the platelets are subjected to relatively high levels of shear stress.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 625-628 ◽  
Author(s):  
DM Peterson ◽  
NA Stathopoulos ◽  
TD Giorgio ◽  
JD Hellums ◽  
JL Moake

Abstract Different types of platelets in various types of plasma were subjected to levels of shear stress that produce irreversible platelet aggregation in normal platelet-rich plasma (PRP). At shear stresses of 90 or 180 dyne/cm2 applied for 30 seconds or five minutes, aggregation was either absent or only transient and reversible using severe von Willebrand's disease (vWD) PRP (less than 1% von Willebrand factor, vWF); Bernard-Soulier syndrome (BSS) PRP (platelets deficient in the membrane glycoprotein Ib, GPIb); normal PRP plus monoclonal antibody (MoAb) to GPIb; thrombasthenic PRP (platelets deficient in membrane glycoprotein IIb-IIIa complex, GPIIb-IIIa); and normal PRP plus MoAb to GPIIb-IIIa. Shear-induced aggregation was inhibited under the above conditions, even though the platelets were activated to release their granular contents. Sheared normal platelets in vWD plasma aggregated in response to added vWF. These studies demonstrate that the formation of stable platelet aggregates under conditions of high shear requires vWF and the availability of both GPIb and GPIIb-IIIa on platelet membranes. The experiments demonstrate that vWF-platelet interactions can occur in the absence of artificial agonists or chemical modification of vWF. They suggest a possible mechanism for platelet aggregation in stenosed or partially obstructed arterial vessels in which the platelets are subjected to relatively high levels of shear stress.


1997 ◽  
Vol 77 (03) ◽  
pp. 568-576 ◽  
Author(s):  
M M Frojmovic ◽  
A Kasirer-Friede ◽  
H L Goldsmith ◽  
E A Brown

SummaryWe previously showed that ADP activation of washed human platelets in plasma-free suspensions supports aggregation at moderate shear stress (0.4-1.6 Nm-2) in Poiseuille flow. Although most activated platelets expressed maximal fibrinogen-occupied GPIIb-IIIa receptors, aggregation appeared to be independent of bound fibrinogen, but blocked by the hexapeptide GRGDSP. Here, we tested the hypothesis that von Willebrand factor (vWF) secreted and expressed on activated platelets mediates aggregation at moderate shear rates from 300 to 1000 s_1 corresponding to shear stresses from 0.3 to 1.1 Nm-2. Relatively unactivated platelets (<15% expressing prebound fibrinogen) were prepared from acidified citrated platelet rich plasma (cPRP) by single centrifugation with 50 nM stable prostacyclin derivative ZK 36374 and resuspended in Tyrodes-albumin at 5 X 104 cells ε_1. Flow cytometric measurements with monoclonal antibody (mAb) 2.2.9 reporting on surface-bound vWF, and with mAb S12 reporting on a-granule secreted P-selectin, showed that 65% and 80%, respectively, of all platelets were maximally activated with respect to maximal secretion and surface expression of these proteins. “Resting” washed platelets exhibited both surface-bound vWF and significant P-selectin secretion. We showed that mAbs 6D1 and NMC4, respectively blocking the adhesive domains on the GPIb receptor recognizing vWF, and on the vWF molecule recognizing the GPIb receptor, partially inhibited ADP-induced aggregation under shear in Couette flow, the degree of inhibition increasing with increasing shear stress. In contrast, mAb 10E5, blocking the vWF binding domain on GPIIb-IIIa, essentially blocked all aggregation at the shear rates tested. We conclude that vWF, expressed on ADP-activated platelets, is at least the predominant cross-bridging molecule mediating aggregation at moderate shear stress. There is an absolute requirement for free activated GPIIb-IIIa receptors, postulated to interact with platelet-secreted, surface bound vWF. The GPIb-vWF cross-bridging reaction plays a facilitative role becoming increasingly important with increasing shear stress. Since aurin tricarboxylic acid, which blocks the GPIb binding domain on vWF, was also found to completely block aggregation in Poiseuille flow, we conclude that it too affects the GPIIb-IIIa interaction.


Fluids ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 67
Author(s):  
Alireza Sharifi ◽  
David Bark

Von Willebrand factor (VWF) is a large multimeric hemostatic protein. VWF is critical in arresting platelets in regions of high shear stress found in blood circulation. Excessive cleavage of VWF that leads to reduced VWF multimer size in plasma can cause acquired von Willebrand syndrome, which is a bleeding disorder found in some heart valve diseases and in patients receiving mechanical circulatory support. It has been proposed that hemodynamics (blood flow) found in these environments ultimately leads to VWF cleavage. In the context of experiments reported in the literature, scission theory, developed for polymers, is applied here to provide insight into flow that can produce strong extensional forces on VWF that leads to domain unfolding and exposure of a cryptic site for cleavage through a metalloproteinase. Based on theoretical tensile forces, laminar flow only enables VWF cleavage when shear rate is large enough (>2800 s−1) or when VWF is exposed to constant shear stress for nonphysiological exposure times (>20 min). Predicted forces increase in turbulence, increasing the chance for VWF cleavage. These findings can be used when designing blood-contacting medical devices by providing hemodynamic limits to these devices that can otherwise lead to acquired von Willebrand syndrome.


1994 ◽  
Vol 302 (3) ◽  
pp. 681-686 ◽  
Author(s):  
K Razdan ◽  
J D Hellums ◽  
M H Kroll

Pathological arterial blood flow generates fluid shear stresses that directly cause platelet aggregation. The mechanism of shear-induced platelet aggregation is incompletely understood, but involves von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib and GP IIb-IIIa, leading to the transmembrane influx of Ca2+ and the activation of protein kinase C. To investigate this further, shear-stress-induced protein tyrosine phosphorylation (PTP) of washed platelets was studied in a cone-plate viscometer. A time- and shear-stress-dependent tyrosine phosphorylation of substrates with approx. M(r) 29,000-31,000, 36,000, 50,000, 58,000, 64,000, 76,000, 85,000 and 105,000 was observed. PTP in response to a threshold shear stress of 0.3 mN/cm2 (30 dyn/cm2) was enhanced in most cases by exogenous purified human vWF, and PTP in response to a pathological shear stress of 0.9 mN/cm2 (90 dyn/cm2) was inhibited in some cases by inhibiting vWF binding to GP Ib or GP IIb-IIIa, or by inhibiting Ca2+ responses with extracellular EGTA. Shear-induced PTP of a substrate of M(r) approximately 31,000 appeared to be independent of GP Ib, and PTP of a substrate(s) of M(r) approximately 29,000 was shear-stress-dependent but independent of extracellular Ca2+. Cytochalasin D, which inhibits GP Ib-cytoskeleton interactions, inhibits the PTP of a substrate of M(r) approximately 76,000. These results suggest that tyrosine phosphorylation may be involved in transmembrane signalling that mediates platelet adhesion and aggregation in response to pathological shear stresses generated at sites of arterial vaso-occlusion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 590-590
Author(s):  
Christopher G. Skipwith ◽  
Wenjing Cao ◽  
X. Long Zheng

Abstract ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats-13) cleaves von Willebrand factor (vWF) at the Tyr1605-Met1606 bond of the central A2 domain. Inability to cleave vWF results in thrombotic thrombocytopenic purpura (TTP), which is characterized by profound thrombocytopenia and microangiopathic hemolytic anemia with various degrees of organ involvement. Previous studies have demonstrated that coagulation factor VIII (Cao et al, PNAS, 105:7416–21, 2008) or platelets (Shim et al, Blood, 111:651–7, 2008) can accelerate proteolytic cleavage of multimeric vWF in solution by ADAMTS13 under mechanic induced shear stresses. However, the concentrations of factor VIII or platelets required to achieve a detectable increase in the proteolytic cleavage product (350K) were beyond the physiological ranges. Therefore, the physiological significance of these findings remained to be determined. In this study, we assessed whether factor VIII and platelets, both of which bind vWF with high affinity, cooperatively affected the proteolytic cleavage of vWF by ADAMTS13 under high shear stress. All experiments were performed with a fixed concentration of vWF (150 nM) and ADAMTS13 (25 nM), and various concentrations of factor VIII and platelets in a buffer containing 20 mM HEPES, pH 7.5, 150 mM NaCl and 2 mM CaCl2. The reaction mixtures (total volume 20 μl in a 0.2 ml PCR tube) were subjected to vortexing at 2,500 rpm in MixMate (manufactured by Eppendorf), which generates laminar shear stress of approximately 30 dynes/cm2. We showed that in the absence of factor VIII, lyophilized platelets at the concentration of 1,000×109 per liter did not increase the proteolytic cleavage of plasma-derived vWF by ADAMTS13. An addition of factor VIII (1, 2, and 5 nM) to the reaction mixture markedly accelerated the rate enhancing effect of lyophilized platelets in a concentration-dependent manner. In the presence of physiological concentration of factor VIII (1–2 nM), the proteolytic cleavage product (350K) detected by Western blot under non-reducing conditions reached the maximal intensity at the platelet concentration of 100×109 per liter. B-domain deleted factor VIII (FVIII-SQ) showed the similar cooperativity with platelets accelerating proteolytic cleavage by ADAMTS13. However, a construct with the acidic region (a3) that binds vWF with high affinity removed (FVIII-2RKR) did not show any cooperativity with platelets in vWF proteolysis by ADAMTS13. We conclude that binding of factor VIII and platelets to vWF cooperatively accelerates the proteolytic cleavage of vWF by ADAMTS13 under high (arterial) shear stress. These findings provide novel insight into the regulation of ADAMTS13-mediated vWF proteolysis by a coagulation factor and platelets under physiological conditions. The data also suggest a potential role of factor VIII and platelets in the therapeutic regimen for TTP.


Sign in / Sign up

Export Citation Format

Share Document