Sound localization on a horizontal surface: virtual and real sound source localization

2015 ◽  
Vol 19 (3-4) ◽  
pp. 213-222 ◽  
Author(s):  
Jonathan Lam ◽  
Bill Kapralos ◽  
Kamen Kanev ◽  
Karen Collins ◽  
Andrew Hogue ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 925 ◽  
Author(s):  
Yeonseok Park ◽  
Anthony Choi ◽  
Keonwook Kim

Vehicle-mounted sound source localization systems provide comprehensive information to improve driving conditions by monitoring the surroundings. The three-dimensional structure of vehicles hinders the omnidirectional sound localization system because of the long and uneven propagation. In the received signal, the flight times between microphones delivers the essential information to locate the sound source. This paper proposes a novel method to design a sound localization system based on the single analog microphone network. This article involves the flight time estimation for two microphones with non-parametric homomorphic deconvolution. The parametric methods are also suggested with Yule-walker, Prony, and Steiglitz-McBride algorithm to derive the coefficient values of the propagation model for flight time estimation. The non-parametric and Steiglitz-McBride method demonstrated significantly low bias and variance for 20 or higher ensemble average length. The Yule-walker and Prony algorithms showed gradually improved statistical performance for increased ensemble average length. Hence, the non-parametric and parametric homomorphic deconvolution well represent the flight time information. The derived non-parametric and parametric output with distinct length will serve as the featured information for a complete localization system based on machine learning or deep learning in future works.


2021 ◽  
Vol 25 ◽  
pp. 233121652110161
Author(s):  
Julian Angermeier ◽  
Werner Hemmert ◽  
Stefan Zirn

Users of a cochlear implant (CI) in one ear, who are provided with a hearing aid (HA) in the contralateral ear, so-called bimodal listeners, are typically affected by a constant and relatively large interaural time delay offset due to differences in signal processing and differences in stimulation. For HA stimulation, the cochlear travelling wave delay is added to the processing delay, while for CI stimulation, the auditory nerve fibers are stimulated directly. In case of MED-EL CI systems in combination with different HA types, the CI stimulation precedes the acoustic HA stimulation by 3 to 10 ms. A self-designed, battery-powered, portable, and programmable delay line was applied to the CI to reduce the device delay mismatch in nine bimodal listeners. We used an A-B-B-A test design and determined if sound source localization improves when the device delay mismatch is reduced by delaying the CI stimulation by the HA processing delay (τHA). Results revealed that every subject in our group of nine bimodal listeners benefited from the approach. The root-mean-square error of sound localization improved significantly from 52.6° to 37.9°. The signed bias also improved significantly from 25.2° to 10.5°, with positive values indicating a bias toward the CI. Furthermore, two other delay values (τHA –1 ms and τHA +1 ms) were applied, and with the latter value, the signed bias was further reduced in some test subjects. We conclude that sound source localization accuracy in bimodal listeners improves instantaneously and sustainably when the device delay mismatch is reduced.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 532
Author(s):  
Henglin Pu ◽  
Chao Cai ◽  
Menglan Hu ◽  
Tianping Deng ◽  
Rong Zheng ◽  
...  

Multiple blind sound source localization is the key technology for a myriad of applications such as robotic navigation and indoor localization. However, existing solutions can only locate a few sound sources simultaneously due to the limitation imposed by the number of microphones in an array. To this end, this paper proposes a novel multiple blind sound source localization algorithms using Source seParation and BeamForming (SPBF). Our algorithm overcomes the limitations of existing solutions and can locate more blind sources than the number of microphones in an array. Specifically, we propose a novel microphone layout, enabling salient multiple source separation while still preserving their arrival time information. After then, we perform source localization via beamforming using each demixed source. Such a design allows minimizing mutual interference from different sound sources, thereby enabling finer AoA estimation. To further enhance localization performance, we design a new spectral weighting function that can enhance the signal-to-noise-ratio, allowing a relatively narrow beam and thus finer angle of arrival estimation. Simulation experiments under typical indoor situations demonstrate a maximum of only 4∘ even under up to 14 sources.


2021 ◽  
pp. 107906
Author(s):  
Jinhui Chen ◽  
Ryoichi Takashima ◽  
Xingchen Guo ◽  
Zhihong Zhang ◽  
Xuexin Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document