Computational implementation

Author(s):  
Mehmet Barlo ◽  
Nuh Aygün Dalkıran
2014 ◽  
Vol 7 (5) ◽  
pp. 879-904 ◽  
Author(s):  
E. Parente Jr ◽  
G. V. Nogueira ◽  
M. Meireles Neto ◽  
L. S. Moreira

The analysis of reinforced concrete structures until failure requires the consideration of geometric and material nonlinearities. However, nonlinear analysis is much more complex and costly than linear analysis. In order to obtain a computationally efficient approach to nonlinear analysis of reinforced concrete structures, this work presents the formulation of a nonlinear plane frame element. Geometric nonlinearity is considered using the co-rotational approach and material nonlinearity is included using appropriate constitutive relations for concrete and steel. The integration of stress resultants and tangent constitutive matrix is carried out by the automatic subdivision of the cross-section and the application of the Gauss quadrature in each subdivision. The formulation and computational implementation are validated using experimental results available in the literature. Excellent results were obtained.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2164
Author(s):  
Héctor J. Gómez ◽  
Diego I. Gallardo ◽  
Karol I. Santoro

In this paper, we present an extension of the truncated positive normal (TPN) distribution to model positive data with a high kurtosis. The new model is defined as the quotient between two random variables: the TPN distribution (numerator) and the power of a standard uniform distribution (denominator). The resulting model has greater kurtosis than the TPN distribution. We studied some properties of the distribution, such as moments, asymmetry, and kurtosis. Parameter estimation is based on the moments method, and maximum likelihood estimation uses the expectation-maximization algorithm. We performed some simulation studies to assess the recovery parameters and illustrate the model with a real data application related to body weight. The computational implementation of this work was included in the tpn package of the R software.


Author(s):  
J. Brendan Ritchie ◽  
Gualtiero Piccinini

Author(s):  
L. Massey

The author argues that the cognitive processes underlying language understanding may not be logico-deductive or inductive, at least not for basic forms of understanding such as the ability to determine the topics of a text document. To demonstrate this point, they present a human cognition inspired framework for core language understanding and its computational implementation. The framework exploits word related knowledge stored in Long Term Memory (LTM) as well as Short Term Memory (STM) limited capacity, neuromorphic spreading activation and neural activation decay to derive the topics of text. The computational model implementing the framework shows the potential of the approach by establishing that the topics generated by the model are as good as those generated by humans.


Sign in / Sign up

Export Citation Format

Share Document