Feasibility limits of using low-grade industrial waste heat in symbiotic district heating and cooling networks

2020 ◽  
Vol 22 (6) ◽  
pp. 1339-1357 ◽  
Author(s):  
Maurizio Santin ◽  
Damiana Chinese ◽  
Alessandra De Angelis ◽  
Markus Biberacher
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2190
Author(s):  
Lingwei Zhang ◽  
Yufei Wang ◽  
Xiao Feng

In the process industry, a large amount of low-grade waste heat is discharged into the environment. Furthermore, district heating and cooling systems require considerable low-grade energy. The integration of the two systems has great significance for energy saving. Because the energy demand of consumers varies in periods, the design and operation of an industrial waste heat recovery system need to match with the fluctuations of district energy demand. However, the impact of the periodic changes on the integration schemes are not considered enough in existing research. In this study, a framework method for solving above problem is proposed. Industrial waste heat was integrated with a district heating and cooling system through a heat recovery loop. A three-step mathematical programming method was used in design and operation optimization for multiperiod integration. A case study was conducted, and the results show that the multiperiod optimization method can bring significant benefits to the system. By solving the mixed integer nonlinear programming model, the optimal operation plans of the integration in different periods can be obtained.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4450
Author(s):  
David Huber ◽  
Viktoria Illyés ◽  
Veronika Turewicz ◽  
Gregor Götzl ◽  
Andreas Hammer ◽  
...  

Fifth-generation district heating and cooling (5th DHC) systems offer promising approaches to decarbonizing space heating, cooling and domestic hot water supply. By using these systems, clustered buildings combined with industrial waste heat can achieve a net-zero energy balance on a variety of time scales. Thanks to the low exergy approach, these systems are highly efficient. As part of the Smart Anergy Quarter Baden (SANBA) project, the thermal energy grid simulation tool TEGSim has been further developed and used to design an ultra-low-temperature district heating (ULTDH) network with hydraulic and thermal components fitted to the specific regional characteristics of the investigated case. Borehole thermal energy storage (BTES) used as seasonal storage ensures long-term feasibility. The annual discrepancy of input of thermal energy provided by space cooling and output of energy demanded by space heating and domestic hot water is supplied by an external low-grade industrial waste heat source. This paper presents the functionality of the simulation and shows how to interpret the findings concerning the design of all components and their interplay, energy consumption and efficiencies.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 615
Author(s):  
Xavier Jobard ◽  
Pierryves Padey ◽  
Martin Guillaume ◽  
Alexis Duret ◽  
Daniel Pahud

This work aims at the development and the experimental characterization of new applications for adsorption heat pumps and chillers driven by industrial waste heat or renewable sources that can provide heating and/or cooling. Adsorption technologies offer the advantage of providing heating and cooling from low temperature sources below 100 °C without using refrigerant with high Global Warming Potential and with very low electricity consumption. Therefore, the technology enables the use of large untapped heat sources, increasing the energy efficiency of the heating and cooling sector with very limited impact on the environment. Several applications were investigated numerically for Switzerland using a simplified model of an adsorption heat pump. Four scenarios were identified as interesting: (1) the valorization of low-grade industrial waste heat in district heating networks, (2) energy efficiency improvement of district heating substations, (3) an autonomous adsorption heat pump with a wood pellets burner and (4) cooling applications. These scenarios were experimentally validated with a laboratory test of a commercial silica gel/water machine. Results show that there is a gap of up to 40% between the prediction of the simplified model and the experimental results. Therefore, there is huge potential to improve the performances of this commercial unit for these applications.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6586
Author(s):  
Junying Wei ◽  
Qi Hua ◽  
Jidai Wang ◽  
Zheng Jiang ◽  
Jihong Wang ◽  
...  

With the development of society, the energy crisis has become increasingly prominent, which greatly affects the sustainable development of the economy of various countries. Industrial energy consumption accounts for more than 70% of China’s total energy consumption, of which more than 50% is converted to industrial waste heat, and recyclable waste heat resources account for about 60% of the total waste heat resources, while China’s current utilization rate of industrial waste heat only reaches about 30%. The development of renewable energy and recovery of low-grade waste heat in industry is the key to solve the problem. As a type of volumetric expander with full flow expansion, the screw expander is extensively applied in the industrial waste heat recovery and geothermal energy generation industry because of its effective utilization of low enthalpy energy. Improving the performance of the screw expander as the core, the paper concludes and summarizes the research status of the leakage, rotor geometry, sealing and lubrication, processing and manufacturing, which can affect the performance of the screw expander. In addition, it also introduces the application status and potential utilization of screw expander.


2017 ◽  
Vol 125 ◽  
pp. 335-348 ◽  
Author(s):  
Ao Luo ◽  
Hao Fang ◽  
Jianjun Xia ◽  
Borong Lin ◽  
Yi jiang

Sign in / Sign up

Export Citation Format

Share Document