scholarly journals Environmental and economic issues concerning the use of wet scrubbers coupled to bagasse-fired boilers: a case study in the Brazilian sugarcane industry

Author(s):  
Murilo Daniel de Mello Innocentini ◽  
Federico Giovanni Lovero ◽  
Ariana Silva Ferreira ◽  
Tapas K. Das ◽  
Paolo Tronville

Abstract For decades, wet scrubbers have been used to control particulate matter (PM) emitted by bagasse-fired boilers in the sugarcane industry. This choice was justified by their acceptable performance in meeting environmental standards, the abundance of water resources, and the fact that their operation was simpler and less expensive than other dry cleaning operations. However, the progressive tightening of PM emission limits, as well as the need for more rational water and wastewater management in these applications, has changed this aspect of the industry. Despite the extensive technical literature on wet scrubbers, the lack of up-to-date indicators of their performance in sugarcane industries has prevented the optimization of wet scrubbing processes. This paper clearly shows that the use of wet scrubbers can result in significant water and heat losses, as well as high operating costs for wastewater treatment stations (WTSs). Mass and energy balances were determined for a typical ethanol-sugar plant operating in Brazil, which is the world's largest sugarcane producer. The key boiler and scrubber performance indicators were evaluated experimentally over the course of a crop season and were compared to the legal particulate emission and water quality requirements in Brazil. The boiler processed an average of 114.8 t/h of bagasse containing 46.8% moisture and generated 4.75 t of gas and 28.2 kg of PM for each ton of dry burned bagasse. Of the total PM (ash and soot), 68% was collected as dry material in the grate, heat exchangers, and multicyclone; 25% was collected in the wet scrubber; and 7% was emitted to the atmosphere, in compliance with the Brazilian standards. The operation of the WTS linked to the gas cleaning system was inefficient, using 70% of the water to convey the dry PM retained in the boiler, heat exchangers, and multicyclone and only 30% to operate the wet scrubber. Evaporation caused the loss of 10.5% of the scrubbing water to the atmosphere. The transportation of moist cake (7.9 t/h, 78% wb) for disposal in fields resulted in significant fuel costs and water losses. The operation of the WTS accounted for 62% of the total capital expenditure of the cleaning system, while the wet scrubber accounted for only 38%. This work provides updated performance indicators and alternatives for optimizing a gas cleaning system to promote more rational water and wastewater management and savings for the sugarcane sector. Graphic abstract Required collection efficiency for bagasse boilers based on the inlet PM concentration and emission limits imposed in Brazil, China, and most countries

2011 ◽  
Vol 6 (4) ◽  
Author(s):  
C. Peregrina ◽  
J. M. Audic ◽  
P. Dauthuille

Assimilate sludge to a fuel is not new. Sludge incineration and Combined Heat and Power (CHP) engines powered with sludge-derived anaerobic digestion gas (ADG) are operations widely used. However, they have a room of improvement to reach simultaneously a positive net power generation and a significant level of waste reduction and stabilization. Gasification has been used in other realms for the conversion of any negative-value carbon-based materials, that would otherwise be disposed as waste, to a gaseous product with a usable heating value for power generation . In fact, the produced gas, the so-called synthetic gas (or syngas), could be suitable for combined heat and power motors. Within this framework gasification could be seen as an optimum alternative for the sludge management that would allow the highest waste reduction yield (similar to incineration) with a high power generation. Although gasification remains a promising route for sewage sludge valorisation, campaigns of measurements show that is not a simple operation and there are still several technical issues to resolve before that gasification was considered to be fully applied in the sludge management. Fluidised bed was chosen by certain technology developers because it is an easy and well known process for solid combustion, and very suitable for non-conventional fuels. However, our tests showed a poor reliable process for gasification of sludge giving a low quality gas production with a significant amount of tars to be treated. The cleaning system that was proposed shows a very limited removal performance and difficulties to be operated. Within the sizes of more common WWTP, an alternative solution to the fluidised bed reactor would be the downdraft bed gasifier that was also audited. Most relevant data of this audit suggest that the technology is more adapted to the idea of sludge gasification presented in the beginning of this paper where a maximum waste reduction is achieved with a great electricity generation thanks to the use of a “good” quality syngas in a CHP engine. Audit show also that there is still some work to do in order to push sludge gasification to a more industrial stage. Regardless what solution would be preferred, the resulting gasification system would involve a more complex scenario compared to Anaerobic Digestion and Incineration, characterised by a thermal dryer and gasifier with a complete gas cleaning system. At the end, economics, reliability and mass and energy yields should be carefully analysed in order to set the place that gasification would play in the forthcoming processing of sewage sludge.


1996 ◽  
Vol 33 (5) ◽  
pp. 383-388 ◽  
Author(s):  
Jürgen Gottschalk ◽  
Peter Buttmann ◽  
Torgny Johansson

2010 ◽  
Vol 10 (5) ◽  
pp. 824-830 ◽  
Author(s):  
N. Staben ◽  
A. Hein ◽  
T. Kluge

For many water supply companies, the sustainable exploitation of water resources has always been an integral part of their business, voluntarily accepting tasks and responsibility which benefit society and the environment in general, e.g. in resource protection, environmental monitoring, and encouragement of sustainable farming practices. However, these voluntary activities are often not sufficiently recognised internally and externally due to a missing sustainability framework and a less developed communication strategy. Therefore, a comprehensive framework for the measurement and reporting of corporate responsibility (CR) in water supply was developed, comprising the environmental and sustainability issues of resource protection and water supply, social responsibility and long-term economical development. This framework was successfully applied in a Balanced Scorecard (BSC) approach and served as basis for a CR report of a German regional water and wastewater company. The CR Performance Indicator system was imbedded in the IWA framework of Performance Indicators (PI), and as such is universally applicable in water and wastewater systems.


2010 ◽  
Vol 10 (4) ◽  
pp. 618-628 ◽  
Author(s):  
A. N. Angelakis ◽  
D. S. Spyridakis

The evolution of urban water management in ancient Greece begins in Crete during the Middle Bronze and the beginning of the Late Bronze Ages (ca. 2000–1500 B.C.) when many remarkable developments occurred in several stages as Minoan civilization flourished on the island. One of its salient characteristics was the architectural and hydraulic function of its water supply and sewerage systems in the Minoan Palaces and several other settlements. These technologies, though they do not give a complete picture of water supply and wastewater and storm water technologies in ancient Greece, indicate nevertheless that such technologies have been used in Greece since prehistoric times. Minoan water and wastewater technologies were diffused to the Greek mainland in the subsequent phases of Greek civilization, i.e. in the Mycenaean, Archaic, Classical, Hellenistic and Roman periods. The scope of this article is the presentation of the most characteristic forms of ancient hydraulic works and related technologies and their uses in past Greek civilizations.


Sign in / Sign up

Export Citation Format

Share Document