Low-intensity photobiomodulation at 632.8 nm increases tgfβ3, col2a1, and sox9 gene expression in rat bone marrow mesenchymal stem cells in vitro

Author(s):  
M. S. Bozhokin ◽  
D. B. Vcherashnii ◽  
S. G. Yastrebov ◽  
L. L. Beilinson ◽  
Ju. V. Zherebtsova ◽  
...  
2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

Author(s):  
FAM Abo-Aziza ◽  
AA Zaki ◽  
AS Amer ◽  
RA Lotfy

Background: In vitro impact of dihydrotestosterone (DHT) and 17-estradiol (E2) in osteogenic differentiation of castrated rat bone marrow mesenchymal stem cells (rBMMSC) still need to be clarified. Materials and Methods: The viability, proliferation and density of cultured rBMMSC isolated from sham operated (Sham) and castrated (Cast) male rats were evaluated. rBMMSC were cultured with osteogenic differentiating medium (ODM) in the presence of DHT (5,10 nM) and E2 (10,100 nM). Osteogenesis was evaluated by alizarin red staining and measurement of calcium deposition and bone alkaline phosphatase (BALP) activity. Results: Population doubling (PD) of rBMMSC isolated from Cast rats was significantly lower (P<0.05) compared to that isolated from Sham rats. rBMMSC from Cast rats showed low scattered calcified nodule after culturing in ODM and did not cause a significant increase in calcium deposition and B-ALP activity compared to rBMMSCs from Sham rats. Exposure of rBMMSC isolated from Cast rats to DHT (5 nM) or E2 (10 nM) in ODM showed medium scattered calcified nodules with significantly higher (P<0.05) calcium deposition and B-ALP activity. Moreover, exposure of rBMMSC to DHT (10 nM) or E2 (100 nM) showed high scattered calcified nodules with higher (P<0.01) calcium deposition and B-ALP activity Conclusion: These results indicated that the presence of testes might participate in controlling the in vitro proliferation and osteogenic differentiation capacity of rBMMSCs. DHT and E2 can enhance the osteogenic capacity of rBMMSCs in a dose-dependent manner. Based on these observations, optimum usage of DHT and E2 can overcome the limitations of MSCs and advance the therapeutic bone regeneration potential in the future.


2019 ◽  
Vol 9 (1) ◽  
pp. 62-68
Author(s):  
Wei Li ◽  
Junjie Zeng ◽  
Ganghua Zhu ◽  
Yunpeng Dong ◽  
Dinghua Xie ◽  
...  

Bone ◽  
2006 ◽  
Vol 38 (5) ◽  
pp. S2
Author(s):  
V. Francalancia ◽  
A. Lewis ◽  
A. Chertcoff ◽  
M.A. Da Silva Minas ◽  
A. Cole ◽  
...  

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Reza Najafi ◽  
Asadollah Asadi ◽  
Saber Zahri ◽  
Arash Abdolmaleki

Background: Tissue engineering may be used to repair, preserve, or improve tissues and organs. In this regard, acellular biological scaffolds are mainly used to reconstruct damaged tissues in regenerative medicine. Objectives: The present study examined the in vitro process of myocytes differentiated from bone marrow mesenchymal stem cells (BM‐MSCs) on the sheep bladder scaffold induced by 5-azacytidine. Methods: Decellularization was performed using a mixed method (physical and chemical) to prepare scaffolds kept at -20°C. The 5-azacytidine was used to induce BM‐MSCs to myocytes. Moreover, the muscle-specific gene expression (Desmin, α-Actinin, Myo D) was evaluated using the RT-PCR method. Results: It was revealed that BM‐MSCs on the scaffold had high proliferation and differentiation potentials. Desmin and α-Actinin gene expression marked the differentiation at the end of the fourth week. Moreover, the results of Masson’s trichrome staining at the end of the second, third and, fourth weeks also indicated that the first differentiation signs emerged at the end of the second week. Furthermore, differentiation reached its maximum level during the fourth week. Conclusions: According to the findings, combining physical and chemical methods was the best technique to prepare the bladder scaffold so that the bone marrow mesenchymal stem cells can be differentiated into myocytes on the bladder scaffold affected by 5-azacytidine (5 µmol), and As the induction time increases to day 28, myocyte cells become more developed.


Sign in / Sign up

Export Citation Format

Share Document