Photobiomodulation therapy upregulates the growth kinetics and multilineage differentiation potential of human dental pulp stem cells—an in vitro Study

Author(s):  
Lama E. Dawoud ◽  
Enas M. Hegazy ◽  
Rania A. Galhom ◽  
Mervat M. Youssef
Author(s):  
Mansoore Saharkhiz ◽  
Fariba Emadian Razavi ◽  
Seyed Mohammad Riahi ◽  
Malaksima Ayadilord ◽  
Zeinab Rostami ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lina M. Escobar ◽  
Zita Bendahan ◽  
Andrea Bayona ◽  
Jaime E. Castellanos ◽  
María-Clara González

Introduction. The aim of the present study was to determine the effects of vitamins D and E on the proliferation, morphology, and differentiation of human dental pulp stem cells (hDPSCs). Methods. In this in vitro experimental study, hDPSCs were isolated, characterized, and treated with vitamins D and E, individually and in combination, utilizing different doses and treatment periods. Changes in morphology and cell proliferation were evaluated using light microscopy and the resazurin assay, respectively. Osteoblast differentiation was evaluated with alizarin red S staining and expression of RUNX2, Osterix, and Osteocalcin genes using real-time RT-PCR. Results. Compared with untreated cells, the number of cells significantly reduced following treatment with vitamin D (49%), vitamin E (35%), and vitamins D + E (61%) after 144 h. Compared with cell cultures treated with individual vitamins, cells treated with vitamins D + E demonstrated decreased cell confluence, with more extensive and flatter cytoplasm that initiated the formation of a significantly large number of calcified nodules after 7 days of treatment. After 14 days, treatment with vitamins D, E, and D + E increased the transcription of RUNX2, Osterix, and Osteocalcin genes. Conclusions. Vitamins D and E induced osteoblastic differentiation of hDPSCs, as evidenced by the decrease in cell proliferation, morphological changes, and the formation of calcified nodules, increasing the expression of differentiation genes. Concurrent treatment with vitamins D + E induces a synergistic effect in differentiation toward an osteoblastic lineage.


2020 ◽  
Vol 9 (1) ◽  
pp. 242 ◽  
Author(s):  
Nam-Ung Bu ◽  
Hyo-Seol Lee ◽  
Bin-Na Lee ◽  
Yun-Chan Hwang ◽  
Sun-Young Kim ◽  
...  

Various three-dimensional (3D) culture methods have been introduced to overcome the limitations of in vitro culture and mimic in vivo conditions. This study aimed to evaluate two microsphere-forming culture methods and a monolayer culture method. We evaluated cell morphology, viability, osteo-, adipo-, and chondrogenic differentiation potential of dental pulp stem cells (DPSCs) cultured in 3D culture plates: ultra-low attachment (ULA) and U-bottomed StemFit 3D (SF) plates, and a two-dimensional (2D) monolayer plate. RNA sequencing (RNA-seq) revealed differentially expressed gene (DEG) profiles of the DPSCs. In contrast to an increasing pattern in the 2D group, cell viability in 3D groups (ULA and SF) showed a decreasing pattern; however, high multilineage differentiation was observed in both the 3D groups. RNA-seq showed significantly overexpressed gene ontology categories including angiogenesis, cell migration, differentiation, and proliferation in the 3D groups. Hierarchical clustering analysis revealed a similar DEG regulation pattern between the 3D groups; however, a comparatively different DEG was observed between the 2D and 3D groups. Taken together, this study shows that DPSCs cultured in microsphere-forming plates present superior multilineage differentiation capacities and demonstrate higher DEG expression in regeneration-related gene categories compared to that in DPSCs cultured in a conventional monolayer plate.


Heliyon ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e03308
Author(s):  
Alexander M. Luke ◽  
Rajashree Patnaik ◽  
Sam Kuriadom ◽  
Salem Abu-Fanas ◽  
Simy Mathew ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6172
Author(s):  
Anna Labedz-Maslowska ◽  
Natalia Bryniarska ◽  
Andrzej Kubiak ◽  
Tomasz Kaczmarzyk ◽  
Malgorzata Sekula-Stryjewska ◽  
...  

Human dental pulp harbours unique stem cell population exhibiting mesenchymal stem/stromal cell (MSC) characteristics. This study aimed to analyse the differentiation potential and other essential functional and morphological features of dental pulp stem cells (DPSCs) in comparison with Wharton’s jelly-derived MSCs from the umbilical cord (UC-MSCs), and to evaluate the osteogenic differentiation of DPSCs in 3D culture with a hypoxic microenvironment resembling the stem cell niche. Human DPSCs as well as UC-MSCs were isolated from primary human tissues and were subjected to a series of experiments. We established a multiantigenic profile of DPSCs with CD45−/CD14−/CD34−/CD29+/CD44+/CD73+/CD90+/CD105+/Stro-1+/HLA-DR− (using flow cytometry) and confirmed their tri-lineage osteogenic, chondrogenic, and adipogenic differentiation potential (using qRT-PCR and histochemical staining) in comparison with the UC-MSCs. The results also demonstrated the potency of DPSCs to differentiate into osteoblasts in vitro. Moreover, we showed that the DPSCs exhibit limited cardiomyogenic and endothelial differentiation potential. Decreased proliferation and metabolic activity as well as increased osteogenic differentiation of DPSCs in vitro, attributed to 3D cell encapsulation and low oxygen concentration, were also observed. DPSCs exhibiting elevated osteogenic potential may serve as potential candidates for a cell-based product for advanced therapy, particularly for bone repair. Novel tissue engineering approaches combining DPSCs, 3D biomaterial scaffolds, and other stimulating chemical factors may represent innovative strategies for pro-regenerative therapies.


Sign in / Sign up

Export Citation Format

Share Document