Climate change threats to environment in the tropical Andes: glaciers and water resources

2010 ◽  
Vol 11 (S1) ◽  
pp. 179-187 ◽  
Author(s):  
Pierre Chevallier ◽  
Bernard Pouyaud ◽  
Wilson Suarez ◽  
Thomas Condom
2010 ◽  
Vol 14 (7) ◽  
pp. 1247-1258 ◽  
Author(s):  
W. Buytaert ◽  
M. Vuille ◽  
A. Dewulf ◽  
R. Urrutia ◽  
A. Karmalkar ◽  
...  

Abstract. Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs) are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.


2020 ◽  
Author(s):  
Pedro Rau ◽  
Wouter Buytaert ◽  
Fabian Drenkhan ◽  
Waldo Lavado ◽  
Juan Jimenez ◽  
...  

<p>The Peruvian Andes are a hotspot of vulnerabilities to impacts in water resources due to the propensity for water stress, the highly unpredictable weather, the sensitivity of glaciers, and the socio-economic vulnerability of its population. In this context, we selected the Vilcanota-Urubamba catchment in Southern Peru for addressing these challenges aiming at our objectives within a particular hydrological high-mountain context in the tropical Andes: a) Develop a fully-distributed, physically-based glacier surface energy balance model that allows for a realistic representation of glacier dynamics in glacier melt projections; b) Design and implement a glacio-hydrological monitoring and data collection approach to quantify non-glacial contributions to water resources and the impact of catchments interventions; c) Mapping of human water use at high spatiotemporal resolution and determining current and future levels of water (in)security; and d) Integrate last objectives in a glacier - water security assessment model and evaluate the tool's capacity to support locally embedded climate change adaptation strategies. </p><p>The RAHU project intends to transform the scientific understanding of the impact of glacier shrinkage on water security and, at the same time, to connect to and inform policy practices in Peru. It follows a "source to tap" paradigm, in which is planned to deliver a comprehensive and fully integrated water resources vulnerability assessment framework for glacier-fed basins, comprising state-of-the-art glaciology, hydrology, water demand characterisation, and water security assessment. It includes glacio-hydrological and water resources monitoring campaigns, to complement existing monitoring efforts of our project partners and collaborators, and new remotely sensed data sets. Those campaigns will be implemented using the principles and tools of participatory monitoring and knowledge co-creation that our team has pioneered in the tropical Andes. The datasets produced by this approach, combined with existing monitoring implemented by our team and collaborators, will allow us to build an integrated water supply-demand-vulnerability assessment model for glacierized basins, and to use this to evaluate adaptation strategies at the local scale. </p><p>This research is part of the multidisciplinary collaboration between British and Peruvian scientists (Newton Fund, Newton-Paulet).</p>


2021 ◽  
Author(s):  
Estefania Quenta ◽  
Verónica Crespo-Pérez ◽  
Bryan Mark ◽  
Ana Lía Gonzales ◽  
Aino Kulonen

<p>Protected areas play an important role in ecosystem conservation and climate change adaptation. However, no systematic information is available on the protection of high elevation freshwater ecosystems (e.g.  lakes, glacierized catchments and streams), their biodiversity and ecosystem services. Here we addressed this issue by reviewing literature and analyzing maps of protected areas and freshwater ecosystems in the tropical Andes. Overall, our revision and inventory indicate: <strong>1)</strong> seven national parks were created with the objective of water resources protection, but they were not designed for freshwater conservation (i.e., larger watersheds), and mainly protect small ecosystems. Furthermore, the creation of new local protected areas was needed for water resources conservation; <strong>2)</strong> we quantified 12% and 31% of lakes and glacial lakes are protected, respectively. Around 12% of the total stream length is protected. First-order streams predominate in the study area, of which 14% are protected. Furthermore, 29% of glacierized catchments (average surface of 677 km<sup>2</sup>)<sup></sup>are protected, and 46% of the total glacier area is protected. We quantified 31 Ramsar sites; <strong>3) </strong>high-value biodiversity sites have not been protected, and ecosystems services information is limited. This review highlights the need for future research to fill knowledge gaps for effective freshwater conservation actions.</p>


Author(s):  
Sejabaledi Agnes Rankoana

Purpose The study explored the impacts of climate change on water resources, and the community-based adaptation practices adopted to ensure water security in a rural community in Limpopo Province, South Africa. Design/methodology/approach The study was conducted in Limpopo Province, South Africa. The participatory approach was used to allow community members to share their challenges of water scarcity, and the measures they have developed to cope with inconsistent water supply. Findings The study results show that the community obtains water for household consumption from the reticulation system supplied by Mutale River and the community borehole. These resources are negatively impacted by drought, change in the frequency and distribution of rainfall, and increased temperature patterns. The water levels in the river and borehole have declined, resulting in unsustainable water supply. The community-based adaptation practices facilitated by the water committee include observance of restrictions and regulations on the water resources use. Others involve securing water from neighbouring resources. Originality/value This type of community-based action in response to climate change could be used as part of rural water management strategies under climate change.


Sign in / Sign up

Export Citation Format

Share Document