Evaluation of Aspergillus niger and Penicillium simplicissimum for their ability to leach Zn–Ni–Cu from waste mobile phone printed circuit boards

Author(s):  
Mahdokht Arshadi ◽  
Alireza Esmaeili ◽  
Soheila Yaghmaei ◽  
Bahareh Arab
2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 521 ◽  
Author(s):  
Rosalba Argumedo-Delira ◽  
Mario J. Gómez-Martínez ◽  
Brenda Joan Soto

Hydrometallurgical and pyrometallurgical processes to recover gold (Au) from cell-phone printed circuit boards (PCBs) have the disadvantage of generating corrosive residues and consuming a large amount of energy. Therefore, it is necessary to look for biological processes that have low energy consumption and are friendly to the environment. Among the biological alternatives for the recovery of Au from PCB is the use of cyanogenic bacteria and filamentous fungi in cultures with agitation. Considering that it is important to explore the response of microorganisms in cultures without agitation to reduce energy expenditure in the recovery of metals from PCB, the present investigation evaluated the capacity of Aspergillus niger MXPE6 and a fungal consortium to induce Au bioleaching from PCB in a culture medium with glucose as a carbon source and without agitation (pH 4.5). The results indicate that the treatments with PCB inoculated with the fungal consortium showed a considerable decrease in pH (2.8) in comparison with the treatments inoculated with A. niger MXPE6 (4.0). The fungal consortium showed a significantly higher Au bioleaching (56%) than A. niger MXPE6 (17%). Finally, the use of fungal consortia grown without agitation could be an alternative to recover metals from PCB, saving energy and material resources.


Sign in / Sign up

Export Citation Format

Share Document