fungal consortium
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 31)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
pp. 126168
Author(s):  
Jinghong Wang ◽  
Lingling Li ◽  
Hongmin Xu ◽  
Yali Zhang ◽  
Yuxin Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 63-69
Author(s):  
Ahmad Syauqi ◽  
Siti Fatimah ◽  
Durrotul Choiroh

The environments have created an abundance of residual plants from all life sectors, which is not optimal for bioethanol. Therefore, this research developed microbial technology that yielded sugar and fermentation testing. The research aimed to discover the delignification process and compare the consuming sugar by Saccharomyces cerevisiae between the chemical saccharification and accelerated bio-agent of fungal consortium in the engineered media. The innovation of the bioethanol process was conducted using raw materials from biomass. Based on this study, some preliminary hypotheses were made: (i) arranging fungal substrate which consists of residual sugar, molasses, and enriched residual papaya fruits could provide distinguishable growth of cell mass; (ii) the substrate concentration of 2.5% and 7.5% in the growth medium using enriched residual papaya fruits, respectively, as a medium, could be distinguished using delignification. A benchmark was used to compare the chemical and bio-agent saccharification. The consortium that grew and produced cell mass by times factor in molasses has fulfilled the element needed compared to the natural organic substances from the papaya fruit. The higher concentration of delignification material substrate yielded higher growth-saccharification and the average of 10.45 ± 0.21 % Brix was obtained by the fungal consortium in the broth medium, although the acceleration growth is insignificant. Nonetheless, Saccharomyces cerevisiae had successfully fermented saccharification yield sugar from the delignification of plants residual


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256376
Author(s):  
Abeer R. M. Abd El-Aziz ◽  
Monira R. Al-Othman ◽  
Sameh M. Hisham ◽  
Shereen M. Shehata

The use of potent fungal mixed cultures is a promising technique for the biodegradation of crude oil. Four isolates of fungi, namely, Alternaria alternata (AA-1), Aspergillus flavus (AF-3), Aspergillus terreus (AT-7), and Trichoderma harzianum (TH-5), were isolated from date palm soil in Saudi Arabia. The mixed fungal of the four isolates have a powerful tool for biodegradation up to 73.6% of crude oil (1%, w/v) in 14 days. The fungal consortium no. 15 containing the four isolates (1:1:1:1) performed significantly better as a biodegradation agent than other consortium in a variety of environmental factors containing crude oil concentration, incubation temperature, initial pH, biodegradation time and the salinity of the medium. The fungal consortium showed better performance in the biodegradation of normal alkanes (n-alkanes) than that of the polycyclic aromatic hydrocarbons (PAHs); the biodegradation efficiency of normal alkanes of the fungal consortium (67.1%) was clearly high than that of the PAHs (56.8%).


Author(s):  
Wafaa M. Abd El-Rahim ◽  
Hassan Moawad ◽  
Ahmed Z. Abdel Azeiz ◽  
Michael J. Sadowsky
Keyword(s):  
Azo Dyes ◽  

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2862
Author(s):  
Wen Zhang ◽  
Xueyan Ren ◽  
Qiong Lei ◽  
Lei Wang

Lignin, which is a component of wood, is difficult to degrade in nature. However, serious decay caused by microbial consortia can happen to wooden antiques during the preservation process. This study successfully screened four microbial consortia with lignin degradation capabilities (J-1, J-6, J-8 and J-15) from decayed wooden antiques. Their compositions were identified by genomic sequencing, while the degradation products were analyzed by GC-MS. The lignin degradation efficiency of J-6 reached 54% after 48 h with an initial lignin concentration of 0.5 g/L at pH 4 and rotation speed of 200 rpm. The fungal consortium of J-6 contained Saccharomycetales (98.92%) and Ascomycota (0.56%), which accounted for 31% of the total biomass. The main bacteria in J-6 were Shinella sp. (47.38%), Cupriavidus sp. (29.84%), and Bosea sp. (7.96%). The strongest degradation performance of J-6 corresponded to its composition, where Saccharomycetales likely adapted to the system and improved lignin degradation enzymes activities, and the abundant bacterial consortium accelerated lignin decomposition. Our work demonstrated the potential utilization of microbial consortia via the synergy of microbial consortia, which may overcome the shortcomings of traditional lignin biodegradation when using a single strain, and the potential use of J-6 for lignin degradation/removal applications.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 743
Author(s):  
Marcela Levio-Raiman ◽  
Gabriela Briceño ◽  
Bárbara Leiva ◽  
Sebastián López ◽  
Heidi Schalchli ◽  
...  

This study provides the basis for implementing a continuous treatment system for wastewater containing a pesticide mixture formed by atrazine, iprodione, and chlorpyrifos. Two fungal strains (Verticilium sp. H5 and Metacordyceps sp. H12) isolated from a biomixture of a biopurification system were able to remove different pesticide concentrations (10 to 50 mg L−1) efficiently from the liquid medium; however, the half-life of the pesticides was reduced and characterized by a T1/2 of 5.4 to 9.2 d for atrazine, 3.7 to 5.8 d for iprodione, and 2.6 to 2.9 d for chlorpyrifos using the fungal consortium. The immobilization of the fungal consortium in alginate bead was effective, with the highest pesticide removal observed using an inoculum concentration of 30% wv−1. The packed-bed reactor with the immobilized fungal consortium, which was operated in the continuous mode at different flow rates (30, 60, and 90 mL h−1), required approximately 10 d to achieve removal efficiency (atrazine: 59%; iprodione: 96%; chlorpyrifos: ~85%). The bioreactor was sensitive to flow rate fluctuations but was able to recover performance quickly. The pesticide metabolites hydroxyatrazine, 3,5-dichloroaniline, and 3,5,6-trichloro-2-pyridinol were produced, and a slight accumulation of 3,5,6-trichloro-2-pyridinol was observed. Nevertheless, reactor removal efficiency was maintained until the study ended (60 d).


2021 ◽  
Vol 7 (3) ◽  
pp. 193
Author(s):  
Mohamed T. Selim ◽  
Salem S. Salem ◽  
Asem A. Mohamed ◽  
Mamdouh S. El-Gamal ◽  
Mohamed F. Awad ◽  
...  

Twenty-one fungal strains were isolated from dye-contaminated soil; out of them, two fungal strains A2 and G2-1 showed the highest decolorization capacity for real textile effluent and were, hence, identified as Aspergillus flavus and Fusarium oxysporium based on morphological and molecular methods. The highest decolorization percentage of 78.12 ± 2.1% was attained in the biotreatment with fungal consortium followed by A. flavus and F. oxysporium separately with removal percentages of 54.68 ± 1.2% and 52.41 ± 1.0%, respectively. Additionally, ultraviolet-visible spectroscopy of the treated effluent showed that a maximum peak (λmax) of 415 nm was reduced as compared with the control. The indicators of wastewater treatment efficacy, namely total dissolved solids, total suspended solids, conductivity, biological oxygen demand, and chemical oxygen demand with removal percentages of 78.2, 78.4, 58.2, 78.1, and 77.6%, respectively, demonstrated a considerable decrease in values due to fungal consortium treatment. The reduction in peak and mass area along with the appearance of new peaks in GC-MS confirms a successful biodegradation process. The toxicity of treated textile effluents on the seed germination of Vicia faba was decreased as compared with the control. The shoot length after irrigation with effluents treated by the fungal consortium was 15.12 ± 1.01 cm as compared with that treated by tap-water, which was 17.8 ± 0.7 cm. Finally, we recommended the decrease of excessive uses of synthetic dyes and utilized biological approaches for the treatment of real textile effluents to reuse in irrigation of uneaten plants especially with water scarcity worldwide.


Sign in / Sign up

Export Citation Format

Share Document