scholarly journals Function Values Are Enough for $$L_2$$-Approximation

Author(s):  
David Krieg ◽  
Mario Ullrich

AbstractWe study the $$L_2$$ L 2 -approximation of functions from a Hilbert space and compare the sampling numbers with the approximation numbers. The sampling number $$e_n$$ e n is the minimal worst-case error that can be achieved with n function values, whereas the approximation number $$a_n$$ a n is the minimal worst-case error that can be achieved with n pieces of arbitrary linear information (like derivatives or Fourier coefficients). We show that $$\begin{aligned} e_n \,\lesssim \, \sqrt{\frac{1}{k_n} \sum _{j\ge k_n} a_j^2}, \end{aligned}$$ e n ≲ 1 k n ∑ j ≥ k n a j 2 , where $$k_n \asymp n/\log (n)$$ k n ≍ n / log ( n ) . This proves that the sampling numbers decay with the same polynomial rate as the approximation numbers and therefore that function values are basically as powerful as arbitrary linear information if the approximation numbers are square-summable. Our result applies, in particular, to Sobolev spaces $$H^s_\mathrm{mix}(\mathbb {T}^d)$$ H mix s ( T d ) with dominating mixed smoothness $$s>1/2$$ s > 1 / 2 and dimension $$d\in \mathbb {N}$$ d ∈ N , and we obtain $$\begin{aligned} e_n \,\lesssim \, n^{-s} \log ^{sd}(n). \end{aligned}$$ e n ≲ n - s log sd ( n ) . For $$d>2s+1$$ d > 2 s + 1 , this improves upon all previous bounds and disproves the prevalent conjecture that Smolyak’s (sparse grid) algorithm is optimal.

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 389
Author(s):  
Jeong-Gyoo Kim

Fourier series is a well-established subject and widely applied in various fields. However, there is much less work on double Fourier coefficients in relation to spaces of general double sequences. We understand the space of double Fourier coefficients as an abstract space of sequences and examine relationships to spaces of general double sequences: p-power summable sequences for p = 1, 2, and the Hilbert space of double sequences. Using uniform convergence in the sense of a Cesàro mean, we verify the inclusion relationships between the four spaces of double sequences; they are nested as proper subsets. The completions of two spaces of them are found to be identical and equal to the largest one. We prove that the two-parameter Wiener space is isomorphic to the space of Cesàro means associated with double Fourier coefficients. Furthermore, we establish that the Hilbert space of double sequence is an abstract Wiener space. We think that the relationships of sequence spaces verified at an intermediate stage in this paper will provide a basis for the structures of those spaces and expect to be developed further as in the spaces of single-indexed sequences.


1985 ◽  
Vol 1 (1) ◽  
pp. 7-26 ◽  
Author(s):  
A. R. Bergstrom

This paper is concerned with the estimation of a nonlinear regression function which is not assumed to belong to a prespecified parametric family of functions. An orthogonal series estimator is proposed, and Hilbert space methods are used in the derivation of its properties and the proof of several convergence theorems. One of the main objectives of the paper is to provide the theoretical basis for a practical stopping rule which can be used for determining the number of Fourier coefficients to be estimated from a given sample.


2009 ◽  
Vol 16 (4) ◽  
pp. 667-682
Author(s):  
Markus Hansen ◽  
Jan Vybíral

Abstract We give a proof of the Jawerth embedding for function spaces with dominating mixed smoothness of Besov and Triebel–Lizorkin type where 0 < 𝑝0 < 𝑝1 ≤ ∞ and 0 < 𝑞0,𝑞1 ≤ ∞ and with If 𝑝1 < ∞, we prove also the Franke embedding Our main tools are discretization by a wavelet isomorphism and multivariate rearrangements.


Author(s):  
SIGRID HEINEKEN ◽  
EWA MATUSIAK ◽  
VICTORIA PATERNOSTRO

We consider perturbation of frames and frame sequences in a Hilbert space ℋ. It is known that small perturbations of a frame give rise to another frame. We show that the canonical dual of the perturbed sequence is a perturbation of the canonical dual of the original one and estimate the error in the approximation of functions belonging to the perturbed space. We then construct perturbations of irregular translates of a bandlimited function in L2(ℝd). We give conditions for the perturbed sequence to inherit the property of being Riesz or frame sequence. For this case we again calculate the error in the approximation of functions that belong to the perturbed space and compare it with our previous estimation error for general Hilbert spaces.


Sign in / Sign up

Export Citation Format

Share Document