Numerical Simulation of Non-Darcy Flow Caused by Cross-Fracture Water Inrush, Considering Particle Loss

Author(s):  
Bin Yang ◽  
Tianhong Yang ◽  
Jun Hu
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2013 ◽  
Vol 31 (16) ◽  
pp. 1617-1624
Author(s):  
R. Z. Yu ◽  
Y. N. Bian ◽  
Q. Lei ◽  
Z. M. Yang ◽  
K. J. Wang

2012 ◽  
Vol 92-93 ◽  
pp. 40-47 ◽  
Author(s):  
Rongze Yu ◽  
Yanan Bian ◽  
Yang Li ◽  
Xiaowei Zhang ◽  
Jun Yan ◽  
...  

2018 ◽  
Vol 22 (5) ◽  
pp. 1987-1998 ◽  
Author(s):  
Jingyu Wang ◽  
Jian Yang ◽  
Long Li ◽  
Pei Qian ◽  
Qiuwang Wang

Packing configuration is widely used in chemical industries such as chemical re-action and chromatograph where the flow distribution has a significant effect on the performance of heat and mass transfer. In the present paper, numerical simulation is carried out to investigate the fluid-flow in three 2-D array configurations including in-line array, staggered array and hexagonal array. Meanwhile, a simplified equivalent circuit network model based on the Voronoi tessellation is proposed to simulate the flow models. It is found that firstly, the local Reynolds number could be used as a criterion to determine the flow regime. Flow with maximum local Reynolds number less than 40 could be regarded as Darcy flow. Secondly, the flow pattern can be well represented by the network model in the range of Darcy flow with the determination method of hydraulic resistance pro-posed in the present paper.


2020 ◽  
Vol 104 (2) ◽  
pp. 1763-1779
Author(s):  
Haitao Yu ◽  
Shuyun Zhu ◽  
Huadong Xie ◽  
Junhua Hou

2012 ◽  
Author(s):  
Jianchun Xu ◽  
Ruizhong Jiang ◽  
Lisha Xie ◽  
Ruiheng Wang ◽  
Lijun Shan ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chong Li ◽  
Banghua Yao ◽  
Qingqing Ma

In order to analyze variable-mass permeation characteristics of broken rock mass under different cementation conditions and reveal the water inrush mechanism of geological structures containing broken rock masses like karst collapse pillars (KCPs) in the coal mine, the EDEM-FLUENT coupling simulation system was used to implement a numerical simulation study of variable-mass permeation of broken rock mass under different cementation conditions and time-dependent change laws of parameters like porosity, permeability, and mass loss rate of broken rock specimens under the erosion effect were obtained. Study results show that (1) permeability change of broken rock specimens under the particle migration effect can be divided into three phases, namely, the slow-changing seepage phase, sudden-changing seepage phase, and steady seepage phase. (2) Specimen fillings continuously migrate and run off under the water erosion effect, porosity and permeability rapidly increase and then tend to be stable, and the mass loss rate firstly rapidly increases and then gradually decreases. (3) Cementation degree has an important effect on permeability of broken rock mass. As cementing force of the specimen is enhanced, its maximum mass loss rate, mass loss, porosity, and permeability all continuously decrease. The study approach and results not only help enhance coal mining operations safety by better understanding KCP water inrush risks. It can also be extended to other engineering applications such as backfill paste piping and tailing dam erosion.


Sign in / Sign up

Export Citation Format

Share Document