Numerical Simulation and Risk Assessment of Water Inrush in a Fault Zone that Contains a Soft Infill

2019 ◽  
Vol 38 (3) ◽  
pp. 667-675
Author(s):  
Zhuo Zheng ◽  
Rentai Liu ◽  
Qingsong Zhang
2020 ◽  
Vol 104 (2) ◽  
pp. 1763-1779
Author(s):  
Haitao Yu ◽  
Shuyun Zhu ◽  
Huadong Xie ◽  
Junhua Hou

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 120 ◽  
Author(s):  
Weitao Liu ◽  
Jiyuan Zhao ◽  
Ruiai Nie ◽  
Yuben Liu ◽  
Yanhui Du

A coupled thermal-nonlinear hydraulic-mechanical (THM) model for fault water inrush was carried out in this paper to study the water-rock-temperature interactions and predict the fault water inrush. First, the governing equations of the coupled THM model were established by coupling the particle transport equation, nonlinear flow equation, mechanical equation, and the heat transfer equation. Second, by setting different boundary conditions, the mechanical model, nonlinear hydraulic-mechanical (HM) coupling model, and the thermal-nonlinear hydraulic-mechanical (THM) coupling model were established, respectively. Finally, a numerical simulation of these models was established by using COMSOL Multiphysics. Results indicate that the nonlinear water flow equation could describe the nonlinear water flow process in the fractured zone of the fault. The mining stress and the water velocity had a great influence on the temperature of the fault zone. The temperature change of the fault zone can reflect the change of the seepage field in the fault and confined aquifer. This coupled THM model can provide a numerical simulation method to describe the coupled process of complex geological systems, which can be used to predict the fault water inrush induced by coal mining activities.


Author(s):  
Xixi Feng ◽  
Qiao Han ◽  
Mingya Wang ◽  
Pan Mao ◽  
Ang Sun ◽  
...  
Keyword(s):  

2017 ◽  
Vol 36 (1) ◽  
pp. 317-326 ◽  
Author(s):  
Binbin Zhu ◽  
Li Wu ◽  
Yaxiong Peng ◽  
Weiwen Zhou ◽  
Chunhui Chen
Keyword(s):  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiao Liang ◽  
Taiyue Qi ◽  
Zhiyi Jin ◽  
Shaojie Qin ◽  
Pengtao Chen

Constructing a shield tunnel that crosses under a river poses considerable safety risks, and risk assessment is essential for guaranteeing the safety of tunnel construction. This paper studies a risk assessment system for a shield tunnel crossing under a river. Risk identification is performed for the shield tunnel, and the risk factors and indicators are determined. The relationship between the two is determined preliminarily by numerical simulation, the numerical simulation results are verified by field measurements, and a sample set is established based on the numerical simulation results. Fuzzy comprehensive evaluation and a backpropagation neural network are then used to evaluate and analyze the risk level. Finally, the risk assessment system is used to evaluate the risk for Line 5 of the Hangzhou Metro in China. Based on the evaluation results, adjustments to the slurry strength, grouting pressure, and soil chamber pressure are proposed, and the risk is mitigated effectively.


2020 ◽  
Vol 13 (14) ◽  
Author(s):  
Longqing Shi ◽  
Mei Qiu ◽  
Chao Teng ◽  
Ying Wang ◽  
Tianhao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document