Simulating the temporal and spatial dynamics of the North Sea using the new model GETM (general estuarine transport model)

2004 ◽  
Vol 54 (2) ◽  
pp. 266-283 ◽  
Author(s):  
Adolf Stips ◽  
Karsten Bolding ◽  
Thomas Pohlmann ◽  
Hans Burchard
2014 ◽  
Vol 71 (6) ◽  
pp. 1342-1355 ◽  
Author(s):  
Xochitl Cormon ◽  
Christophe Loots ◽  
Sandrine Vaz ◽  
Youen Vermard ◽  
Paul Marchal

Spatial interactions between saithe (Pollachius virens) and hake (Merluccius merluccius) were investigated in the North Sea. Saithe is a well-established species in the North Sea, while occurrence of the less common hake has recently increased in the area. Spatial dynamics of these two species and their potential spatial interactions were explored using binomial generalized linear models (GLM) applied to the International Bottom Trawl Survey (IBTS) data from 1991 to 2012. Models included different types of variables: (i) abiotic variables including sediment types, temperature, and bathymetry; (ii) biotic variables including potential competitors and potential preys presence; and (iii) spatial variables. The models were reduced and used to predict and map probable habitats of saithe, hake but also, for the first time in the North Sea, the distribution of the spatial overlap between these two species. Changes in distribution patterns of these two species and of their overlap were also investigated by comparing species’ presence and overlap probabilities predicted over an early (1991–1996) and a late period (2007–2012). The results show an increase in the probability over time of the overlap between saithe and hake along with an expansion towards the southwest and Scottish waters. These shifts follow trends observed in temperature data and might be indirectly induced by climate changes. Saithe, hake, and their overlap are positively influenced by potential preys and/or competitors, which confirms spatial co-occurrence of the species concerned and leads to the questions of predator–prey relationships and competition. Finally, the present study provides robust predictions concerning the spatial distribution of saithe, hake, and of their overlap in the North Sea, which may be of interest for fishery managers.


2016 ◽  
Vol 16 (2) ◽  
pp. 759-776 ◽  
Author(s):  
V. Matthias ◽  
A. Aulinger ◽  
A. Backes ◽  
J. Bieser ◽  
B. Geyer ◽  
...  

Abstract. Scenarios for future shipping emissions in the North Sea have been developed in the framework of the Clean North Sea Shipping project. The effects of changing NOx and SO2 emissions were investigated with the CMAQ chemistry transport model for the year 2030 in the North Sea area. It has been found that, compared to today, the contribution of shipping to the NO2 and O3 concentrations will increase due to the expected enhanced traffic by more than 20 and 5 %, respectively, by 2030 if no regulation for further emission reductions is implemented in the North Sea area. PM2.5 will decrease slightly because the sulfur contents in ship fuels will be reduced as international regulations foresee. The effects differ largely between regions, seasons and date of the implementation of stricter regulations for NOx emissions from newly built ships.


2015 ◽  
Vol 15 (8) ◽  
pp. 11325-11368 ◽  
Author(s):  
V. Matthias ◽  
A. Aulinger ◽  
A. Backes ◽  
J. Bieser ◽  
B. Geyer ◽  
...  

Abstract. Scenarios for future shipping emissions in the North Sea have been developed in the framework of the Clean North Sea Shipping project. The effects of changing NOx and SO2 emissions were invesigated with the chemistry transport model CMAQ for the year 2030 in the North Sea area. It has been found that, compared to today, the contribution of shipping to the NO2 and O3 concentrations will increase due to the expected enhanced traffic by more than 20 and 5%, respectively, by 2030 if no regulation for further emission reductions will be implemented in the North Sea area. PM2.5 will decrease slightly because the sulphur contents in ship fuels will be reduced as international regulations foresee. The effects differ largely between regions, seasons and date of the implementation of stricter regulations for NOx emissions from new built ships.


2016 ◽  
Vol 16 (2) ◽  
pp. 739-758 ◽  
Author(s):  
A. Aulinger ◽  
V. Matthias ◽  
M. Zeretzke ◽  
J. Bieser ◽  
M. Quante ◽  
...  

Abstract. The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea – including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers away from the sea, the contribution was about 6 % in summer and 4 % in winter. The relative contribution of the secondary pollutant NO3− was found to reach 20 % in summer and 6 % in winter even far from the shore.


Sign in / Sign up

Export Citation Format

Share Document