Projection and detection of climate change impact on fatigue damage of offshore floating structures operating in three offshore oil fields of the North Sea

2020 ◽  
Vol 70 (10) ◽  
pp. 1339-1354
Author(s):  
Tao Zou ◽  
Miroslaw Lech Kaminski
Author(s):  
Tao Zou ◽  
Miroslaw Lech Kaminski ◽  
Hang Li ◽  
Longbin Tao

Abstract The climate change may affect the long-term wave statistics and consequently affect the cumulative fatigue damage. This paper aims to project the trend of annual fatigue damage of offshore floating structures and to detect the climate change impact on the future fatigue damage by coupling a conventional fatigue design method with climate and wave models. Firstly, climate scenarios are selected to project the global radiative forcing level over decadal or century time scales. Secondly, climate models are used to simulate atmosphere circulations and to obtain the wind field data. Thirdly, wave conditions are simulated by coupling wind driven wave models to climate models. Fourthly, stress analysis and fatigue assessments are conducted to project the annual fatigue damage. At last, control simulations are carried out in order to identify the range of natural variability and to detect the human-induced change. A case study is presented in the Sable field offshore South Africa. The results indicate that the significant wave height is considerably influenced by the human-induced climate change. However, this change induced by human activities is still partially masked by the dominant natural variability. In addition, both the significant wave height and the annual fatigue damage increase over century time-scales.


2021 ◽  
Author(s):  
Joanna K. Bluemel ◽  
Simon Fischer ◽  
David W. Kulka ◽  
Christopher P. Lynam ◽  
Jim R. Ellis

2021 ◽  
Vol 163 ◽  
pp. 105230
Author(s):  
Michael Weinert ◽  
Moritz Mathis ◽  
Ingrid Kröncke ◽  
Thomas Pohlmann ◽  
Henning Reiss

2013 ◽  
Vol 10 (5) ◽  
pp. 1525-1557
Author(s):  
K. O'Driscoll ◽  
B. Mayer ◽  
J. Su ◽  
M. Mathis

Abstract. The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models. To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10 yr periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. Since estimates of future concentration levels of POPs in the atmosphere, oceans and rivers are not available, our approach was to reutilise 2005 values in the atmosphere, rivers and at the open ocean boundaries for every year of the simulations. In this way, we attribute differences between the three 10 yr simulations to climate change only. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilised, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilisation of γ-HCH increase in the future relative to the present. In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, both of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.


CONVERSAZIONES were held this year on 6 May and 24 June. At the first conversazione twenty-four exhibits and a film were shown. Dr P. E. Kent, F.R.S., and Mr P. J. Walmsley of The British Petroleum Company Limited arranged an exhibit demonstrating the latest progress in the exploration for hydrocarbons in the North Sea. The established gas fields and the recently discovered oil fields were shown on maps together with sections which illustrated their structure. Seismic sections and geological interpretations were exhibited to show the type of information being obtained in the North Sea and the structural complexities which arise. A scale model of one of the semi-submersible drilling outfits used in North Sea exploration was on display together with a sample of British North Sea oil.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 272 ◽  
Author(s):  
Christian Dieterich ◽  
Shiyu Wang ◽  
Semjon Schimanke ◽  
Matthias Gröger ◽  
Birgit Klein ◽  
...  

An ensemble of regional climate change scenarios for the North Sea is validated and analyzed. Five Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs) using three different Representative Concentration Pathways (RCPs) have been downscaled with the coupled atmosphere–ice–ocean model RCA4-NEMO. Validation of sea surface temperature (SST) against different datasets suggests that the model results are well within the spread of observational datasets. The ensemble mean SST with a bias of less than 1 ∘ C is the solution that fits the observations best and underlines the importance of ensemble modeling. The exchange of momentum, heat, and freshwater between atmosphere and ocean in the regional, coupled model compares well with available datasets. The climatological seasonal cycles of these fluxes are within the 95% confidence limits of the datasets. Towards the end of the 21st century the projected North Sea SST increases by 1.5 ∘ C (RCP 2.6), 2 ∘ C (RCP 4.5), and 4 ∘ C (RCP 8.5), respectively. Under this change the North Sea develops a specific pattern of the climate change signal for the air–sea temperature difference and latent heat flux in the RCP 4.5 and 8.5 scenarios. In the RCP 8.5 scenario the amplitude of the spatial heat flux anomaly increases to 5 W/m 2 at the end of the century. Different hypotheses are discussed that could contribute to the spatially non-uniform change in air–sea interaction. The most likely cause for an increased latent heat loss in the central western North Sea is a drier atmosphere towards the end of the century. Drier air in the lee of the British Isles affects the balance of the surface heat budget of the North Sea. This effect is an example of how regional characteristics modulate global climate change. For climate change projections on regional scales it is important to resolve processes and feedbacks at regional scales.


Sign in / Sign up

Export Citation Format

Share Document