scholarly journals A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts

2012 ◽  
Vol 12 (2) ◽  
pp. 301-323 ◽  
Author(s):  
F. J. Vermolen ◽  
A. Gefen
2015 ◽  
Vol 112 (5) ◽  
pp. 1416-1421 ◽  
Author(s):  
Kapil Bambardekar ◽  
Raphaël Clément ◽  
Olivier Blanc ◽  
Claire Chardès ◽  
Pierre-François Lenne

Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.


2001 ◽  
Vol 114 (3) ◽  
pp. 493-501 ◽  
Author(s):  
H. Oda ◽  
S. Tsukita

Invagination of the epithelial cell sheet of the prospective mesoderm in Drosophila gastrulation is a well-studied, relatively simple morphogenetic event that results from dynamic cell shape changes and cell movements. However, these cell behaviors have not been followed at a sufficiently short time resolution. We examined mesoderm invagination in living wild-type embryos by real-time imaging of fluorescently labeled cell-cell adherens junctions, which are located at the apical zones of cell-cell contact. Low-light fluorescence video microscopy directly visualized the onset and progression of invagination. In an initial period of approximately 2 minutes, cells around the ventral midline reduced their apical surface areas slowly in a rather synchronous manner. Next, the central and more lateral cells stochastically accelerated or initiated their apical constriction, giving rise to random arrangements of cells with small and relatively large apices. Thus, we found that mesoderm invagination began with slow synchronous and subsequent fast stochastic phases of cell apex constriction. Furthermore, we showed that the mesoderm invagination of folded gastrulation mutant embryos lacked the normal two constriction phases, and instead began with asynchronous, feeble cell shape changes. Our observations suggested that Folded gastrulation-mediated signaling enabled synchronous activation of the contractile cortex, causing competition among the individual mesodermal cells for apical constriction. Movies available on-line: http://www.biologists.com/JCS/movies/jcs2073.html


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Molly C Jud ◽  
Josh Lowry ◽  
Thalia Padilla ◽  
Erin Clifford ◽  
Yuqi Yang ◽  
...  

AbstractMorphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.


Glia ◽  
1992 ◽  
Vol 6 (3) ◽  
pp. 180-187 ◽  
Author(s):  
Ignacio Torres-Aleman ◽  
Maria Teresa Rejas ◽  
Sebastian Pons ◽  
Luis Miguel Garcia-Segura

Open Biology ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 180124 ◽  
Author(s):  
Jack Daniel Sunter ◽  
Flavia Moreira-Leite ◽  
Keith Gull

Flagella have multiple functions that are associated with different axonemal structures. Motile flagella typically have a 9 + 2 arrangement of microtubules, whereas sensory flagella normally have a 9 + 0 arrangement. Leishmania exhibits both of these flagellum forms and differentiation between these two flagellum forms is associated with cytoskeletal and cell shape changes. We disrupted flagellum elongation in Leishmania by deleting the intraflagellar transport (IFT) protein IFT140 and examined the effects on cell morphogenesis. Δift140 cells have no external flagellum, having only a very short flagellum within the flagellar pocket. This short flagellum had a collapsed 9 + 0 (9v) axoneme configuration reminiscent of that in the amastigote and was not attached to the pocket membrane. Although amastigote-like changes occurred in the flagellar cytoskeleton, the cytoskeletal structures of Δift140 cells retained their promastigote configurations, as examined by fluorescence microscopy of tagged proteins and serial electron tomography. Thus, Leishmania promastigote cell morphogenesis does not depend on the formation of a long flagellum attached at the neck. Furthermore, our data show that disruption of the IFT system is sufficient to produce a switch from the 9 + 2 to the collapsed 9 + 0 (9v) axonemal structure, echoing the process that occurs during the promastigote to amastigote differentiation.


2018 ◽  
Vol 115 (11) ◽  
pp. 2259-2270
Author(s):  
Gonca Erdemci-Tandogan ◽  
Madeline J. Clark ◽  
Jeffrey D. Amack ◽  
M. Lisa Manning

Sign in / Sign up

Export Citation Format

Share Document