Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells

2001 ◽  
Vol 114 (3) ◽  
pp. 493-501 ◽  
Author(s):  
H. Oda ◽  
S. Tsukita

Invagination of the epithelial cell sheet of the prospective mesoderm in Drosophila gastrulation is a well-studied, relatively simple morphogenetic event that results from dynamic cell shape changes and cell movements. However, these cell behaviors have not been followed at a sufficiently short time resolution. We examined mesoderm invagination in living wild-type embryos by real-time imaging of fluorescently labeled cell-cell adherens junctions, which are located at the apical zones of cell-cell contact. Low-light fluorescence video microscopy directly visualized the onset and progression of invagination. In an initial period of approximately 2 minutes, cells around the ventral midline reduced their apical surface areas slowly in a rather synchronous manner. Next, the central and more lateral cells stochastically accelerated or initiated their apical constriction, giving rise to random arrangements of cells with small and relatively large apices. Thus, we found that mesoderm invagination began with slow synchronous and subsequent fast stochastic phases of cell apex constriction. Furthermore, we showed that the mesoderm invagination of folded gastrulation mutant embryos lacked the normal two constriction phases, and instead began with asynchronous, feeble cell shape changes. Our observations suggested that Folded gastrulation-mediated signaling enabled synchronous activation of the contractile cortex, causing competition among the individual mesodermal cells for apical constriction. Movies available on-line: http://www.biologists.com/JCS/movies/jcs2073.html

Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 589-597 ◽  
Author(s):  
P. Morize ◽  
A.E. Christiansen ◽  
M. Costa ◽  
S. Parks ◽  
E. Wieschaus

During Drosophila gastrulation, mesodermal precursors are brought into the interior of the embryo by formation of the ventral furrow. The first steps of ventral furrow formation involve a flattening of the apical surface of the presumptive mesodermal cells and a constriction of their apical diameters. In embryos mutant for folded gastrulation (fog), these cell shape changes occur but the timing and synchrony of the constrictions are abnormal. A similar phenotype is seen in a maternal effect mutant, concertina (cta). fog encodes a putative secreted protein whereas cta encodes an (alpha)-subunit of a heterotrimeric G protein. We have proposed that localized expression of the fog signaling protein induces apical constriction by interacting with a receptor whose downstream cellular effects are mediated by the cta G(alpha)protein. <P> In order to test this model, we have ectopically expressed fog at the blastoderm stage using an inducible promoter. In addition, we have examined the constitutive activation of cta protein by blocking GTP hydrolysis using both in vitro synthesized mutant alleles and cholera toxin treatment. Activation of the fog/cta pathway by any of these procedures results in ectopic cell shape changes in the gastrula. Uniform fog expression rescues the gastrulation defects of fog null embryos but not cta mutant embryos, arguing that cta functions downstream of fog expression. The normal location of the ventral furrow in embryos with uniformly expressed fog suggests the existence of a fog-independent pathway determining mesoderm-specific cell behaviors and invagination. Epistasis experiments indicate that this pathway requires snail but not twist expression.


2019 ◽  
Author(s):  
Clint S. Ko ◽  
Prateek Kalakuntla ◽  
Adam C. Martin

AbstractDuring development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled non-mitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.


2015 ◽  
Vol 112 (5) ◽  
pp. 1416-1421 ◽  
Author(s):  
Kapil Bambardekar ◽  
Raphaël Clément ◽  
Olivier Blanc ◽  
Claire Chardès ◽  
Pierre-François Lenne

Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell–cell and cell–ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell–cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.


2018 ◽  
Author(s):  
Valentina Ferro ◽  
Manli Chuai ◽  
David McGloin ◽  
Cornelis Weijer

Oriented cell intercalations and cell shape changes are key determinants of large-scale epithelial cell sheet deformations occurring during gastrulation in many organisms. In several cases directional intercalation and cell shape changes have been shown to be associated with a planar cell polarity in the organisation of the actin-myosin cytoskeleton of epithelial cells. This polarised cytoskeletal organisation has been postulated to reflect the directional tension necessary to drive and orient directional cell intercalations. We have now further characterised and applied a recently introduced non-destructive optical manipulation technique to measure the tension in individual cell junctions in the epiblast of chick embryos in the early stages of primitive streak formation. We have measured junctional tension as a function of position and orientation. Junctional tension of mesendoderm cells, the tissue that drives the formation of the streak, is higher than tension of junctions of cells in other parts of the epiblast. Furthermore, in the mesendoderm junctional tension is higher in the direction of intercalation. The data are fitted best with a Maxwell model and we find that both junctional tension and relaxation time are dependent on myosin activity.


Development ◽  
2020 ◽  
Vol 147 (17) ◽  
pp. dev191049 ◽  
Author(s):  
Kia Z. Perez-Vale ◽  
Mark Peifer

ABSTRACTDuring embryonic development, a simple ball of cells re-shapes itself into the elaborate body plan of an animal. This requires dramatic cell shape changes and cell movements, powered by the contractile force generated by actin and myosin linked to the plasma membrane at cell-cell and cell-matrix junctions. Here, we review three morphogenetic events common to most animals: apical constriction, convergent extension and collective cell migration. Using the fruit fly Drosophila as an example, we discuss recent work that has revealed exciting new insights into the molecular mechanisms that allow cells to change shape and move without tearing tissues apart. We also point out parallel events at work in other animals, which suggest that the mechanisms underlying these morphogenetic processes are conserved.


2020 ◽  
Author(s):  
Joel Dokmegang ◽  
Moi Hoon Yap ◽  
Liangxiu Han ◽  
Matteo Cavaliere ◽  
René Doursat

AbstractUnderstanding the processes by which the mammalian embryo implants in the maternal uterus is a long-standing challenge in embryology. New insights into this morphogenetic event could be of great importance in helping, for example, to reduce human infertility. During implantation the blastocyst, composed of epiblast and trophectoderm, undergoes significant remodelling from an oval ball to an egg cylinder. A main feature of this transformation is symmetry breaking and reshaping of the epiblast into a “cup”. Based on previous studies, we hypothesise that this event is the result of mechanical constraints originating from the trophectoderm, which is also significantly transformed during this process. In order to investigate this hypothesis we propose MG#, an original computational model of biomechanics able to reproduce key cell shape changes and tissue level behaviours in silico. With this model, we simulate epiblast and trophectoderm morphogenesis during implantation. First, our results uphold experimental findings that repulsion at the apical surface of the epiblast is sufficient to drive lumenogenesis. Then, we provide new theoretical evidence that trophectoderm morphogenesis indeed dictates the cup shape of the epiblast and fosters its movement towards the uterine tissue. Together, these results offer mechanical insights into mouse implantation and highlight the usefulness of agent-based modelling methods in the study of embryogenesis.Author summaryComputational modelling is increasingly used in the context of biological development. Here we propose a novel agent-based model of biological cell and tissue mechanics to investigate important morphological changes during mouse embryo implantation. Our model is able to replicate key biological cell shape changes and tissue-level behaviour. Simulating mouse implantation with this model, we bring theoretical support to previous experimental observations that lumenogenesis in the epiblast is driven by repulsion, and provide theoretical evidence that changes in epiblast shape during implantation are regulated by trophectoderm development.


2020 ◽  
Author(s):  
Daniel Toddie-Moore ◽  
Martti Montanari ◽  
Ngan Vi Tran ◽  
Evgeniy Brik ◽  
Hanna Antson ◽  
...  

Developmental patterning is thought to be regulated by conserved signalling pathways. Initial patterns are often broad before refining to only those cells that commit to a particular fate. However, the mechanisms by which pattern refinement takes place remain to be addressed. Using the posterior crossvein (PCV) of the Drosophila pupal wing as a model, into which bone morphogenetic protein (BMP) ligand is extracellularly transported to instruct vein patterning, we investigate how pattern refinement is regulated. We found that BMP signalling induces apical enrichment of Myosin II in developing crossvein cells to regulate apical constriction. Live imaging of cellular behaviour indicates that changes in cell shape are dynamic and transient, only being maintained in those cells that retain vein fate after refinement. Disrupting cell shape changes throughout the PCV inhibits pattern refinement. In contrast, disrupting cell shape in only a subset of vein cells can result in a loss of BMP signalling. In addition, we observed that expressing the constitutively active form of the BMP type I receptor in clones caused apical constriction autonomously and often induced BMP signalling loss in the PCV region in a non-autonomous manner. We propose that the cell shape changes of future PCV cells allow them to compete more efficiently for the basally localised BMP signal by forming a mechano-chemical feedback loop. This study highlights a new form of competition among the cells: competing for a signal that induces cell fate.


Sign in / Sign up

Export Citation Format

Share Document