scholarly journals Finite element analysis of bone remodelling with piezoelectric effects using an open-source framework

Author(s):  
Yogesh Deepak Bansod ◽  
Maeruan Kebbach ◽  
Daniel Kluess ◽  
Rainer Bader ◽  
Ursula van Rienen

AbstractBone tissue exhibits piezoelectric properties and thus is capable of transforming mechanical stress into electrical potential. Piezoelectricity has been shown to play a vital role in bone adaptation and remodelling processes. Therefore, to better understand the interplay between mechanical and electrical stimulation during these processes, strain-adaptive bone remodelling models without and with considering the piezoelectric effect were simulated using the Python-based open-source software framework. To discretise numerical attributes, the finite element method (FEM) was used for the spatial variables and an explicit Euler scheme for the temporal derivatives. The predicted bone apparent density distributions were qualitatively and quantitatively evaluated against the radiographic scan of a human proximal femur and the bone apparent density calculated using a bone mineral density (BMD) calibration phantom, respectively. Additionally, the effect of the initial bone density on the resulting predicted density distribution was investigated globally and locally. The simulation results showed that the electrically stimulated bone surface enhanced bone deposition and these are in good agreement with previous findings from the literature. Moreover, mechanical stimuli due to daily physical activities could be supported by therapeutic electrical stimulation to reduce bone loss in case of physical impairment or osteoporosis. The bone remodelling algorithm implemented using an open-source software framework facilitates easy accessibility and reproducibility of finite element analysis made.

2018 ◽  
Vol 15 (2) ◽  
pp. 663-665 ◽  
Author(s):  
Nor Aiman Sukindar ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
B.T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Open-source 3D printer has been widely used for fabricating three dimensional products. However, this technology has some drawbacks that need to be improved such as accuracy of the finished parts. One of the factors affecting the final product is the ability of the machine to extrude the material consistently, which is related to the flow behavior of the material inside the liquefier. This paper observes the pressure drop along the liquefier by manipulating the nozzle die angle from 80° to 170° using finite element analysis (FEA) for polymethylmethacrylate (PMMA) material. When the pressure drop along the liquefier is varied, the printed product also varies, thus providing less accuracy in the finished parts. Based on the FEA, it was found that 130° was the optimum die angle (convergent angle) for extruding PMMA material using open-source 3D printing.


2016 ◽  
Vol 2 (1) ◽  
pp. 643-647 ◽  
Author(s):  
Josephine Mauck ◽  
Jan Wieding ◽  
Daniel Kluess ◽  
Rainer Bader

AbstractThe numerical simulation of bone remodelling provides a great opportunity to improve the choice of therapy in particular for complex bone defects. Despite this fact, its use in clinical practice is not yet expedient because of several unresolved problems. In this paper a new bone remodelling algorithm based on standard computer tomography datasets and finite element analysis is introduced.


Sign in / Sign up

Export Citation Format

Share Document