Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan

2009 ◽  
Vol 123 (4) ◽  
pp. 563-576 ◽  
Author(s):  
Hiroyuki Muraoka ◽  
Nobuko Saigusa ◽  
Kenlo N. Nasahara ◽  
Hibiki Noda ◽  
Jun Yoshino ◽  
...  
2014 ◽  
Vol 30 (2) ◽  
pp. 247-266 ◽  
Author(s):  
Hibiki M. Noda ◽  
Hiroyuki Muraoka ◽  
Kenlo Nishida Nasahara ◽  
Nobuko Saigusa ◽  
Shohei Murayama ◽  
...  

2019 ◽  
Author(s):  
Jinyan Yang ◽  
Belinda E. Medlyn ◽  
Martin G. De Kauwe ◽  
Remko A. Duursma ◽  
Mingkai Jiang ◽  
...  

Abstract. The response of mature forest ecosystems to rising atmospheric carbon dioxide concentration (Ca) is a major uncertainty in projecting the future trajectory of the Earth’s climate. Although leaf-level net photosynthesis is typically stimulated by exposure to elevated Ca (eCa), it is unclear how this stimulation translates into carbon cycle responses at whole-ecosystem scale. Here we estimate a key component of the carbon cycle, the gross primary productivity (GPP), of a mature native Eucalypt forest exposed to Free Air CO2 Enrichment (the EucFACE experiment). In this experiment, light-saturated leaf photosynthesis increased by 19 % in response to a 38 % increase in Ca. We used the process-based forest canopy model, MAESPA, to upscale these leaf-level measurements of photosynthesis with canopy structure to estimate Gross Primary Production (GPP) and its response to eCa. We assessed the direct impact of eCa, as well as the indirect effect of photosynthetic acclimation to eCa and variability among treatment plots via different model scenarios. At the canopy scale, MAESPA estimated a GPP of 1574 g C m−2 yr−1 under ambient conditions across four years and a direct increase in GPP of +11 % in response to eCa. The smaller canopy-scale response simulated by the model, as compared to the leaf-level response, could be attributed to the prevalence of RuBP-regeneration limitation of leaf photosynthesis within the canopy. Photosynthetic acclimation reduced this estimated response to 10 %. Considering variability in leaf area index across plots, we estimated a mean GPP response to eCa of 6 % with a 95 % CI of (−2 %, 14 %). These findings highlight that the GPP response of mature forests to eCa is likely to be considerably lower than the response of light-saturated leaf photosynthesis. Our results provide an important context for interpreting eCa responses of other components of the ecosystem carbon cycle.


2018 ◽  
Vol 15 (22) ◽  
pp. 6909-6925 ◽  
Author(s):  
Qianyu Li ◽  
Xingjie Lu ◽  
Yingping Wang ◽  
Xin Huang ◽  
Peter M. Cox ◽  
...  

Abstract. The concentration–carbon feedback (β), also called the CO2 fertilization effect, is a key unknown in climate–carbon-cycle projections. A better understanding of model mechanisms that govern terrestrial ecosystem responses to elevated CO2 is urgently needed to enable a more accurate prediction of future terrestrial carbon sink. We conducted C-only, carbon–nitrogen (C–N) and carbon–nitrogen–phosphorus (C–N–P) simulations of the Community Atmosphere Biosphere Land Exchange model (CABLE) from 1901 to 2100 with fixed climate to identify the most critical model process that causes divergence in β. We calculated CO2 fertilization effects at various hierarchical levels from leaf biochemical reaction and leaf photosynthesis to canopy gross primary production (GPP), net primary production (NPP), and ecosystem carbon storage (cpool) for seven C3 plant functional types (PFTs) in response to increasing CO2 under the RCP 8.5 scenario. Our results show that β values at biochemical and leaf photosynthesis levels vary little across the seven PFTs, but greatly diverge at canopy and ecosystem levels in all simulations. The low variation of the leaf-level β is consistent with a theoretical analysis that leaf photosynthetic sensitivity to increasing CO2 concentration is almost an invariant function. In the CABLE model, the major jump in variation of β values from leaf levels to canopy and ecosystem levels results from divergence in modeled leaf area index (LAI) within and among PFTs. The correlation of βGPP, βNPP, or βcpool each with βLAI is very high in all simulations. Overall, our results indicate that modeled LAI is a key factor causing the divergence in β in the CABLE model. It is therefore urgent to constrain processes that regulate LAI dynamics in order to better represent the response of ecosystem productivity to increasing CO2 in Earth system models.


Sign in / Sign up

Export Citation Format

Share Document