scholarly journals Multi-level modeling: cornerstones of a rationale

Author(s):  
Ulrich Frank

AbstractThis expert voice paper presents a comprehensive rationale of multi-level modeling. It aims not only at a systematic assessment of its prospects, but also at encouraging applications of multi-level modeling in business information systems and at providing a motivation for future research. The assessment is developed from a comparison of multi-level modeling with object-oriented, general-purpose modeling languages (GPMLs) and domain-specific modeling languages (DSMLs). To foster a differentiated evaluation, we propose a multi-perspective framework that accounts, among others, for essential design conflicts, different types of users, as well as economic aspects. Besides the assessment of the additional abstraction offered by multi-level modeling, the evaluation also identifies specific drawbacks and remaining challenges. Based on the results of the comparative assessment, in order to foster the adoption and further development of multi-level modeling, we discuss the prospects of supplementing multi-level modeling languages with multi-level programming languages and suggest possible dissemination strategies customized for different groups of users. The paper concludes with an outline of future research.

Author(s):  
Liliana María Favre

MDA requires the ability to understand different languages such as general purpose languages, domain specific languages, modeling languages or programming languages. An underlying principle of MDA for integrating semantically in a unified and interoperable way such languages is using metamodeling techniques.


Author(s):  
Kyoungho An ◽  
Adam Trewyn ◽  
Aniruddha Gokhale ◽  
Shivakumar Sastry

Much of the existing literature on domain-specific modeling languages (DSMLs) focuses on either the DSML design and their use in developing complex software systems (e.g., in enterprise and web applications), or their use in physical systems (e.g., process control). With increasing focus on research and development of cyber-physical systems (CPS) such as autonomous automotive systems and process control systems, which are systems that tightly integrate cyber and physical artifacts, it becomes important to understand the need for and the roles played by DSMLs for such systems. One use of DSMLs for CPS systems is in the analysis and verification of different properties of the system. Many questions arise in this context: How are the cyber and physical artifacts represented in DSMLs? How can these DSMLs be used in analysis? This book chapter addresses these questions through a case study of reconfigurable conveyor systems used as a representative example.


Author(s):  
Srdjan Zivkovic ◽  
Krzystof Miksa ◽  
Harald Kühn

It has been acknowledged that model-based approaches and domain-specific modeling (DSM) languages, methods and tools are beneficial for the engineering of increasingly complex systems and software. Instead of general-purpose one-size-fits-all modeling languages, DSM methods facilitate model-based analysis and design of complex systems by providing modeling concepts tailored to the specific problem domain. Furthermore, hybrid DSM methods combine single DSM methods into integrated modeling methods, to allow for multi-perspective modeling. Metamodeling platforms provide flexible means for design and implementation of such hybrid modeling methods and appropriate domain-specific modeling tools. In this paper, we report on the conceptualization of a hybrid DSM method in the domain of network physical devices management, and its implementation based on the ADOxx metamodeling platform. The method introduces a hybrid modeling approach. A dedicated DSM language (DSML) is used to model the structure of physical devices and their configurations, whereas the formal language for knowledge representation OWL2 is used to specify configuration-related constraints. The outcome of the work is a hybrid, semantic technology-enabled DSM tool that allows for efficient and consistency-preserving model-based configuration of network equipment.


Sign in / Sign up

Export Citation Format

Share Document