scholarly journals Nodule Localization in Thyroid Ultrasound Images with a Joint-Training Convolutional Neural Network

2020 ◽  
Vol 33 (5) ◽  
pp. 1266-1279
Author(s):  
Ruoyun Liu ◽  
Shichong Zhou ◽  
Yi Guo ◽  
Yuanyuan Wang ◽  
Cai Chang
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9 ◽  
Author(s):  
Weibin Chen ◽  
Zhiyang Gu ◽  
Zhimin Liu ◽  
Yaoyao Fu ◽  
Zhipeng Ye ◽  
...  

Thyroid nodule is a clinical disorder with a high incidence rate, with large number of cases being detected every year globally. Early analysis of a benign or malignant thyroid nodule using ultrasound imaging is of great importance in the diagnosis of thyroid cancer. Although the b-mode ultrasound can be used to find the presence of a nodule in the thyroid, there is no existing method for an accurate and automatic diagnosis of the ultrasound image. In this pursuit, the present study envisaged the development of an ultrasound diagnosis method for the accurate and efficient identification of thyroid nodules, based on transfer learning and deep convolutional neural network. Initially, the Total Variation- (TV-) based self-adaptive image restoration method was adopted to preprocess the thyroid ultrasound image and remove the boarder and marks. With data augmentation as a training set, transfer learning with the trained GoogLeNet convolutional neural network was performed to extract image features. Finally, joint training and secondary transfer learning were performed to improve the classification accuracy, based on the thyroid images from open source data sets and the thyroid images collected from local hospitals. The GoogLeNet model was established for the experiments on thyroid ultrasound image data sets. Compared with the network established with LeNet5, VGG16, GoogLeNet, and GoogLeNet (Improved), the results showed that using GoogLeNet (Improved) model enhanced the accuracy for the nodule classification. The joint training of different data sets and the secondary transfer learning further improved its accuracy. The results of experiments on the medical image data sets of various types of diseased and normal thyroids showed that the accuracy rate of classification and diagnosis of this method was 96.04%, with a significant clinical application value.


2020 ◽  
Vol 10 (8) ◽  
pp. 1943-1948
Author(s):  
Ran Hui ◽  
Jiaxing Chen ◽  
Yu Liu ◽  
Lin Shi ◽  
Chao Fu ◽  
...  

Objective: To explore the application of deep convolutional neural network theory in thyroid ultrasound image system analysis and eigenvalue extraction to help medically predict the patient’s condition. Methods: The thyroid color ultrasound image dataset of our hospital was selected as the training and test samples. The comparison experiment was designed in the deep convolutional neural network learning framework to test the feasibility of the method. Results: Image information classification based on deep neural network algorithm can predict thyroid nodule lesions well, and has good accuracy in the classification test of benign and malignant nodules. Conclusion: The clinical application of deep learning method and thyroid ultrasound image feature value extraction and system analysis can improve the accuracy of clinical thyroid benign and malignant classification.


Author(s):  
Victoria Wu

Introduction: Scoliosis, an excessive curvature of the spine, affects approximately 1 in 1,000 individuals. As a result, there have formerly been implementations of mandatory scoliosis screening procedures. Screening programs are no longer widely used as the harms often outweigh the benefits; it causes many adolescents to undergo frequent diagnosis X-ray procedure This makes spinal ultrasounds an ideal substitute for scoliosis screening in patients, as it does not expose them to those levels of radiation. Spinal curvatures can be accurately computed from the location of spinal transverse processes, by measuring the vertebral angle from a reference line [1]. However, ultrasound images are less clear than x-ray images, making it difficult to identify the spinal processes. To overcome this, we employ deep learning using a convolutional neural network, which is a powerful tool for computer vision and image classification [2]. Method: A total of 2,752 ultrasound images were recorded from a spine phantom to train a convolutional neural network. Subsequently, we took another recording of 747 images to be used for testing. All the ultrasound images from the scans were then segmented manually, using the 3D Slicer (www.slicer.org) software. Next, the dataset was fed through a convolutional neural network. The network used was a modified version of GoogLeNet (Inception v1), with 2 linearly stacked inception models. This network was chosen because it provided a balance between accurate performance, and time efficient computations. Results: Deep learning classification using the Inception model achieved an accuracy of 84% for the phantom scan.  Conclusion: The classification model performs with considerable accuracy. Better accuracy needs to be achieved, possibly with more available data and improvements in the classification model.  Acknowledgements: G. Fichtinger is supported as a Canada Research Chair in Computer-Integrated Surgery. This work was funded, in part, by NIH/NIBIB and NIH/NIGMS (via grant 1R01EB021396-01A1 - Slicer+PLUS: Point-of-Care Ultrasound) and by CANARIE’s Research Software Program.    Figure 1: Ultrasound scan containing a transverse process (left), and ultrasound scan containing no transverse process (right).                                Figure 2: Accuracy of classification for training (red) and validation (blue). References:           Ungi T, King F, Kempston M, Keri Z, Lasso A, Mousavi P, Rudan J, Borschneck DP, Fichtinger G. Spinal Curvature Measurement by Tracked Ultrasound Snapshots. Ultrasound in Medicine and Biology, 40(2):447-54, Feb 2014.           Krizhevsky A, Sutskeyer I, Hinton GE. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25:1097-1105. 


Author(s):  
Arun Asokan Nair ◽  
Mardava Rajugopal Gubbi ◽  
Trac Duy Tran ◽  
Austin Reiter ◽  
Muyinatu A. Lediju Bell

2020 ◽  
Vol 79 (9) ◽  
pp. 1189-1193
Author(s):  
Anders Bossel Holst Christensen ◽  
Søren Andreas Just ◽  
Jakob Kristian Holm Andersen ◽  
Thiusius Rajeeth Savarimuthu

ObjectivesWe have previously shown that neural network technology can be used for scoring arthritis disease activity in ultrasound images from rheumatoid arthritis (RA) patients, giving scores according to the EULAR-OMERACT grading system. We have now further developed the architecture of this neural network and can here present a new idea applying cascaded convolutional neural network (CNN) design with even better results. We evaluate the generalisability of this method on unseen data, comparing the CNN with an expert rheumatologist.MethodsThe images were graded by an expert rheumatologist according to the EULAR-OMERACT synovitis scoring system. CNNs were systematically trained to find the best configuration. The algorithms were evaluated on a separate test data set and compared with the gradings of an expert rheumatologist on a per-joint basis using a Kappa statistic, and on a per-patient basis using a Wilcoxon signed-rank test.ResultsWith 1678 images available for training and 322 images for testing the model, it achieved an overall four-class accuracy of 83.9%. On a per-patient level, there was no significant difference between the classifications of the model and of a human expert (p=0.85). Our original CNN had a four-class accuracy of 75.0%.ConclusionsUsing a new network architecture we have further enhanced the algorithm and have shown strong agreement with an expert rheumatologist on a per-joint basis and on a per-patient basis. This emphasises the potential of using CNNs with this architecture as a strong assistive tool for the objective assessment of disease activity of RA patients.


Sign in / Sign up

Export Citation Format

Share Document