Spherical cap harmonic model for mapping and predicting regional TEC

GPS Solutions ◽  
2010 ◽  
Vol 15 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Jingbin Liu ◽  
Ruizhi Chen ◽  
Zemin Wang ◽  
Hongping Zhang
1992 ◽  
Vol 44 (3) ◽  
pp. 243-252 ◽  
Author(s):  
Zhen-chang AN ◽  
Shi-zhuang MA ◽  
Dong-hai TAN ◽  
D. R. BARRACLOUGH ◽  
D. J. KERRIDGE

2012 ◽  
Vol 226-228 ◽  
pp. 1947-1950 ◽  
Author(s):  
Jin Yun Guo ◽  
Shu Yang Wang ◽  
Guo Wei Li ◽  
Wei Hua Mao ◽  
Yuan Ming Ji

The local quasi-geoid model up to centimeter precision has became the basic requirement for the development of modern surveying and mapping science. There are a variety of models can be used for the quasi-geoid refinement, including the spherical cap harmonic model (SCH). This paper studies the theory of SCH to get the spherical cap harmonic expression to fit the height anomaly in the least squares sense, which is to achieve the transformation between the geodetic height and the normal height. We also discuss the selection of the maximum model degree in local region. The practical case is studied to refine the local quasi-geoid model with SCH using GPS/leveling data at 85 points. The results indicate that the local quasi-geoid model can reach 3 centimeter-level at the internal and external fitting precision.


2021 ◽  
Vol 390 ◽  
pp. 113409
Author(s):  
Holger Heitsch ◽  
René Henrion
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1548
Author(s):  
Jiuling Hu ◽  
Lianjin Hong ◽  
Lili Yin ◽  
Yu Lan ◽  
Hao Sun ◽  
...  

At present, high-speed underwater acoustic communication requires underwater transducers with the characteristics of low frequency and broadband. The low-frequency transducers also are expected to be low-frequency directional for realization of point-to-point communication. In order to achieve the above targets, this paper proposes a new type of flextensional transducer which is constructed of double mosaic piezoelectric ceramic rings and spherical cap metal shells. The transducer realizes broadband transmission by means of the coupling between radial vibration of the piezoelectric rings and high-order flexural vibration of the spherical cap metal shells. The low-frequency directional transmission of the transducer is realized by using excitation signals with different amplitude and phase on two mosaic piezoelectric rings. The relationship between transmitting voltage response (TVR), resonance frequency and structural parameters of the transducer is analyzed by finite element software COMSOL. The broadband performance of the transducer is also optimized. On this basis, the low-frequency directivity of the transducer is further analyzed and the ratio of the excitation signals of the two piezoelectric rings is obtained. Finally, a prototype of the broadband ring flextensional underwater transducer is fabricated according to the results of simulation. The electroacoustic performance of the transducer is tested in an anechoic water tank. Experimental results show that the maximum TVR of the transducer is 147.2 dB and the operation bandwidth is 1.5–4 kHz, which means that the transducer has good low-frequency, broadband transmission capability. Meanwhile, cardioid directivity is obtained at 1.4 kHz and low-frequency directivity is realized.


Sign in / Sign up

Export Citation Format

Share Document