scholarly journals Increasing l-threonine production in Escherichia coli by overexpressing the gene cluster phaCAB

2019 ◽  
Vol 46 (11) ◽  
pp. 1557-1568 ◽  
Author(s):  
Jianli Wang ◽  
Wenjian Ma ◽  
Yu Fang ◽  
Jun Yang ◽  
Jie Zhan ◽  
...  
Microbiology ◽  
1987 ◽  
Vol 133 (10) ◽  
pp. 2707-2717
Author(s):  
C. L. Hunt ◽  
V. Colless ◽  
M. T. Smith ◽  
D. O. Molasky ◽  
M. S. Malo ◽  
...  
Keyword(s):  

2019 ◽  
Vol 124 ◽  
pp. 389-395 ◽  
Author(s):  
Yuriy A. Knirel ◽  
Pavel A. Ivanov ◽  
Sofiya N. Senchenkova ◽  
Olesya I. Naumenko ◽  
Olga O. Ovchinnikova ◽  
...  

2007 ◽  
Vol 56 (5) ◽  
pp. 620-628 ◽  
Author(s):  
Matthew W. Gilmour ◽  
Adam B. Olson ◽  
Ashleigh K. Andrysiak ◽  
Lai-King Ng ◽  
Linda Chui

Serogroup classifications based upon the O-somatic antigen of Shiga toxin-producing Escherichia coli (STEC) provide significant epidemiological information on clinical isolates. Each O-antigen determinant is encoded by a unique cluster of genes present between the gnd and galF chromosomal genes. Alternatively, serogroup-specific polymorphisms might be encoded in loci that are encoded outside of the O-antigen gene cluster. Segments of the core bacterial loci mdh, gnd, gcl, ppk, metA, ftsZ, relA and metG for 30 O26 STEC strains have previously been sequenced, and comparative analyses to O157 distinguished these two serogroups. To screen these loci for serogroup-specific traits within a broader range of clinically significant serogroups, DNA sequences were obtained for 19 strains of 10 additional STEC serogroups. Unique alleles were observed at the gnd locus for each examined STEC serogroup, and this correlation persisted when comparative analyses were extended to 144 gnd sequences from 26 O-serogroups (comprising 42 O : H-serotypes). These included O157, O121, O103, O26, O5 : non-motile (NM), O145 : NM, O113 : H21, O111 : NM and O117 : H7 STEC; and furthermore, non-toxin encoding O157, O26, O55, O6 and O117 strains encoded distinct gnd alleles compared to STEC strains of the same serogroup. DNA sequencing of a 643 bp region of gnd was, therefore, sufficient to minimally determine the O-antigen of STEC through molecular means, and the location of gnd next to the O-antigen gene cluster offered additional support for the co-inheritance of these determinants. The gnd DNA sequence-based serogrouping method could improve the typing capabilities for STEC in clinical laboratories, and was used successfully to characterize O121 : H19, O26 : H11 and O177 : NM clinical isolates prior to serological confirmation during outbreak investigations.


2007 ◽  
Vol 190 (5) ◽  
pp. 1710-1717 ◽  
Author(s):  
Amit Mukherjee ◽  
Mark K. Mammel ◽  
J. Eugene LeClerc ◽  
Thomas A. Cebula

ABSTRACT In silico analyses of previously sequenced strains of Escherichia coli O157:H7, EDL933 and Sakai, localized the gene cluster for the utilization of N-acetyl-d-galactosamine (Aga) and d-galactosamine (Gam). This gene cluster encodes the Aga phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) and other catabolic enzymes responsible for transport and catabolism of Aga. As the complete coding sequences for enzyme IIA (EIIA)Aga/Gam, EIIBAga, EIICAga, and EIIDAga of the Aga PTS are present, E. coli O157:H7 strains normally are able to utilize Aga as a sole carbon source. The Gam PTS complex, in contrast, lacks EIICGam, and consequently, E. coli O157:H7 strains cannot utilize Gam. Phenotypic analyses of 120 independent isolates of E. coli O157:H7 from our culture collection revealed that the overwhelming majority (118/120) displayed the expected Aga+ Gam− phenotype. Yet, when 194 individual isolates, derived from a 2006 spinach-associated E. coli O157:H7 outbreak, were analyzed, all (194/194) displayed an Aga− Gam− phenotype. Comparison of aga/gam sequences from two spinach isolates with those of EDL933 and Sakai revealed a single nucleotide change (G:C→A:T) in the agaF gene in the spinach-associated isolates. The base substitution in agaF, which encodes EIIAAga/Gam of the PTS, changes a conserved glycine residue to serine (Gly91Ser). Pyrosequencing of this region showed that all spinach-associated E. coli O157:H7 isolates harbored this same G:C→A:T substitution. Notably, when agaF + was cloned into an expression vector and transformed into six spinach isolates, all (6/6) were able to grow on Aga, thus demonstrating that the Gly91Ser substitution underlies the Aga− phenotype in these isolates.


2007 ◽  
Vol 282 (46) ◽  
pp. 33326-33335 ◽  
Author(s):  
David Corbett ◽  
Hayley J. Bennett ◽  
Hamdia Askar ◽  
Jeffrey Green ◽  
Ian S. Roberts

In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.


Sign in / Sign up

Export Citation Format

Share Document