Hydrogen, carbon and sulphur isotope ratios in peat: the role of diagenessis and water regimes in reconstruction of past climates

2004 ◽  
Vol 2 (4) ◽  
pp. 179-183 ◽  
Author(s):  
Mariusz-Orion Jędrysek ◽  
Grzegorz Skrzypek
Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


2017 ◽  
Vol 68 (2) ◽  
pp. 119-129 ◽  
Author(s):  
Jakub Jirásek ◽  
Zdeněk Dolníček ◽  
Dalibor Matýsek ◽  
Tomáš Urubek

AbstractBarite is a relatively uncommon phase in vein and amygdule mineralizations hosted by igneous rocks of the teschenite association in the Silesian Unit (Western Carpathians). In macroscopically observable sizes, it has been reported from 10 sites situated only in the Czech part of the Silesian Unit. Microscopic barite produced by the hydrothermal alteration of rock matrix and also by the supergene processes is more abundant. We examined four samples of barite by mineralogical and geochemical methods. Electron microprobe analyses proved pure barites with up to 0.038 apfu Sr and without remarkable internal zonation. Fluid inclusion and sulphur isotope data suggests that multiple sources of fluid components have been involved during barite crystallization. Barite contains primary and secondary aqueous all-liquid (L) or less frequent two-phase (L+V) aqueous fluid inclusions with variable salinity (0.4-2.9 wt. % NaCl eq.) and homogenization temperatures between 77 and 152 °C. The higher-salinity fluid endmember was probably Cretaceous seawater and the lower-salinity one was probably diagenetic water derived from surrounding flysch sediments during compaction and thermal alteration of clay minerals. The δ34S values of barite samples range between -1.0 ‰ and +16.4 ‰ CDT suggesting participation of two sources of sulphate, one with a near-zero δ34S values probably derived from wall rocks and another with high δ34S values being most probably sulphate from the Cretaceous seawater. All results underline the role of externally derived fluids during post-magmatic alteration of bodies of rock of the teschenite association.


1999 ◽  
Vol 22 (7) ◽  
pp. 831-839 ◽  
Author(s):  
J. M. Monaghan ◽  
C. M. Scrimgeour ◽  
W. M. Stein ◽  
F. J. Zhao ◽  
E. J. Evans

Hydrobiologia ◽  
1992 ◽  
Vol 235-236 (1) ◽  
pp. 205-217 ◽  
Author(s):  
Per Andersson ◽  
Peter Torssander ◽  
Johan Ingri

1988 ◽  
Vol 49 (4) ◽  
pp. 265-288 ◽  
Author(s):  
M. Dickman ◽  
H.G. Thode ◽  
S. Rao ◽  
R. Anderson

2017 ◽  
Vol 8 ◽  
Author(s):  
Marco Cirilli ◽  
Giovanni Caruso ◽  
Clizia Gennai ◽  
Stefania Urbani ◽  
Eleonora Frioni ◽  
...  

1997 ◽  
Vol 75 (5) ◽  
pp. 803-811 ◽  
Author(s):  
M. Ben-David ◽  
T. A. Hanley ◽  
D. R. Klein ◽  
D. M. Schell

Feeding niches of riverine and coastal mink (Mustela vison) in southeast Alaska differ in prey composition and abundance and diving medium during spring and summer. In autumn, however, the upstream migration of spawning Pacific salmon (Oncorhynchus sp.) creates a pulse of food for mink. We hypothesized that diets of coastal and riverine mink, and therefore their stable isotope ratios (δ13C, δ15N), would differ significantly during periods when salmon were absent, but that salmon carcasses would constitute a large portion of the diet of both groups during the salmon spawning season. Stable isotope analyses of clotted blood cells from 24 live-captured mink and muscle tissue from 25 mink carcasses were used to indicate the composition of diets of individual mink in 1992 and 1993. These isotope values were then compared with stable isotope ratios of prey, using a multiple-source mixing model. Our results indicate that riverine mink depended on salmon (carcasses and fry), with little seasonal or individual variation, whereas coastal mink relied on intertidal organisms in spring and summer, with measurable (<25%) consumption of salmon carcasses when they became available in autumn. Coastal and riverine mink in southeast Alaska differ strongly in their diets in spring and summer, with both groups relying on the abundant salmon carcasses during autumn.


Sign in / Sign up

Export Citation Format

Share Document