upstream migration
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 0)

2022 ◽  
Vol 577 ◽  
pp. 117270
Author(s):  
Jiaguang Li ◽  
Vamsi Ganti ◽  
Chenglong Li ◽  
Hao Wei


2021 ◽  
Author(s):  
◽  
Donald John Jellyman

<p>The early freshwater life of the two species of New Zealand freshwater eels, Anguilla australis schmidtii Phillipps and A. dieffenbachii Gray was studied involving an examination of 8131 glass-eels, 5275 migratory elvers, and 4291 resident eels of less than 26 cm. Most eels were collected from the Makara Stream, Wellington by set-net, hand-net and electric fishing. These extensive samples together with subsidiary collections from elsewhere in New Zealand show that glass-eels of both species arrive in fresh-water from July to December. Their otoliths indicate a marine larval life of about 18 months but it is not possible as yet to locate the precise oceanic spawning areas. Migratory movements of glass-eels are in two phases: an invasion of fresh-water from the sea and an upstream migration. The former occurs only at night with a periodicity corresponding to the daily ebb-flood tidal rhythms. There is a seasonal reversal in this response which is attributable to the onset of the behavioural transition taking place prior to the second migratory phase. Increased pigmentation and changes in response to light, flowing fresh-water and schooling tendencies characterise this latter migration which occurs primarily at spring tide periods. Such juvenile eels show specific habitat preferences and a high degree of olfactory differentiation of water types. This behaviour, together with pigment development and physical tolerances, was studied in the laboratory. Measurements of invading glass-eels show that mean length, weight and condition all decline throughout the season of arrival but mean vertebral numbers remain constant. An upstream migration of small eels (elvers) occurs each summer and is readily observed at many hydro-electric stations. These migrations, comprising eels of mixed sizes and age groups, penetrate progressively further upstream each year. In both species, scales begin formation at body lengths of 16.5-20 cm. All features of scale formation, including the number of scale rings, are related to length with relative differences in rate of development occurring between the species. In contrast to scale rings, otolith rings are annual in formation and become visible after grinding or burning the otolith. Growth rates established for 273 eels to 29 cm in length from the Makara Stream, Wellington, are slow, with mean annual increments of 2.2 and 2.1 cm respectively for shortfins and longfins. In contrast, shortfins from a coastal lake near Wellington reach 26 cm in their third year of freshwater life. Length-weight relationships for small eels are given together with mean monthly condition factors. Growth studies on elvers held in a multiple tank unit in which temperature, density, and amount and frequency of feeding could be controlled, show that young eels grow more slowly than normal under such conditions. However, growth appears optimum at 20 degrees C with a feeding rate of 5-7% body weight per day. Feeding efficiency decreases with higher temperatures. At both glass-eel and elver stages, shortfins adapt and survive better under artificial conditions.</p>



2021 ◽  
Author(s):  
◽  
Donald John Jellyman

<p>The early freshwater life of the two species of New Zealand freshwater eels, Anguilla australis schmidtii Phillipps and A. dieffenbachii Gray was studied involving an examination of 8131 glass-eels, 5275 migratory elvers, and 4291 resident eels of less than 26 cm. Most eels were collected from the Makara Stream, Wellington by set-net, hand-net and electric fishing. These extensive samples together with subsidiary collections from elsewhere in New Zealand show that glass-eels of both species arrive in fresh-water from July to December. Their otoliths indicate a marine larval life of about 18 months but it is not possible as yet to locate the precise oceanic spawning areas. Migratory movements of glass-eels are in two phases: an invasion of fresh-water from the sea and an upstream migration. The former occurs only at night with a periodicity corresponding to the daily ebb-flood tidal rhythms. There is a seasonal reversal in this response which is attributable to the onset of the behavioural transition taking place prior to the second migratory phase. Increased pigmentation and changes in response to light, flowing fresh-water and schooling tendencies characterise this latter migration which occurs primarily at spring tide periods. Such juvenile eels show specific habitat preferences and a high degree of olfactory differentiation of water types. This behaviour, together with pigment development and physical tolerances, was studied in the laboratory. Measurements of invading glass-eels show that mean length, weight and condition all decline throughout the season of arrival but mean vertebral numbers remain constant. An upstream migration of small eels (elvers) occurs each summer and is readily observed at many hydro-electric stations. These migrations, comprising eels of mixed sizes and age groups, penetrate progressively further upstream each year. In both species, scales begin formation at body lengths of 16.5-20 cm. All features of scale formation, including the number of scale rings, are related to length with relative differences in rate of development occurring between the species. In contrast to scale rings, otolith rings are annual in formation and become visible after grinding or burning the otolith. Growth rates established for 273 eels to 29 cm in length from the Makara Stream, Wellington, are slow, with mean annual increments of 2.2 and 2.1 cm respectively for shortfins and longfins. In contrast, shortfins from a coastal lake near Wellington reach 26 cm in their third year of freshwater life. Length-weight relationships for small eels are given together with mean monthly condition factors. Growth studies on elvers held in a multiple tank unit in which temperature, density, and amount and frequency of feeding could be controlled, show that young eels grow more slowly than normal under such conditions. However, growth appears optimum at 20 degrees C with a feeding rate of 5-7% body weight per day. Feeding efficiency decreases with higher temperatures. At both glass-eel and elver stages, shortfins adapt and survive better under artificial conditions.</p>



Hydrobiologia ◽  
2021 ◽  
Author(s):  
Ana García-Vega ◽  
Juan Francisco Fuentes-Pérez ◽  
Pedro M. Leunda Urretabizkaia ◽  
José Ardaiz Ganuza ◽  
Francisco Javier Sanz-Ronda

AbstractRiver fragmentation and alterations in flow and thermal regimes are the main stressors affecting migrating fish, which could be aggravated by climate change and increasing water demand. To assess these impacts and define mitigation measures, it is vital to understand fish movement patterns and the environmental variables affecting them. This study presents a long-term (1995–2019) analysis of upstream migration patterns of anadromous and potamodromous brown trout in the lower River Bidasoa (Spain). For this, captures in a monitoring station were analyzed using Survival Analysis and Random Forest techniques. Results showed that most upstream movements of potamodromous trout occurred in October–December, whereas in June–July for anadromous trout, although with differences regarding sex and size. Both, fish numbers and dates varied over time and were related to the environmental conditions, with different influence on each ecotype. The information provided from comparative studies can be used as a basis to develop adaptive management strategies to ensure freshwater species conservation. Moreover, studies in the southern distribution range can be crucial under climate warming scenarios, where species are expected to shift coldwards.



Author(s):  
Camille Poulet ◽  
Alexis Paumier ◽  
Géraldine Lassalle ◽  
Maud Pierre ◽  
Patrick Lambert


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Josh Murauskas ◽  
Kim Hyatt ◽  
Jeff Fryer ◽  
Elliot Koontz ◽  
Skyeler Folks ◽  
...  

Abstract Background Okanagan River Sockeye Salmon Oncorhynchus nerka (Okanagan Sockeye) are one of two remaining self-sustaining Sockeye Salmon populations in the Columbia River Basin. We used detection histories of smolts implanted with passive integrated transponder (PIT) tags between 2012 and 2019 to estimate survival and behavioral metrics during reintroduction efforts and changing environmental conditions over the monitoring period. Results Smolts migrating to McNary Dam, whose route includes 130 km of the Okanagan River and 388 km of the Columbia River, generally had high survival (mean of 87.0% per 100 km) and fast migration speeds (up to 50 km/day) relative to other salmonids in the region. Smolt-to-adult returns (SARs) ranged from 0.4 to 6.1% and were greater for fish originating from Skaha Lake compared to cohorts tagged in Osoyoos Lake. Most adults returned after 2 years in the ocean (69%), followed by jacks (27%), and adults that spent 3 years at sea (4%), though Skaha Lake adults had a significantly younger age structure than cohorts from Osoyoos Lake. Survival of adults from Bonneville Dam (rkm 235) upstream to Wells Dam (rkm 830) was generally high (80–92%), and migration speed decreased in upstream reaches. Survival from Wells Dam to the Okanagan River was only estimable in 2018, where 64% of adults survived to the spawning grounds. The upstream migration of adult Okanagan Sockeye was significantly compromised during the drought of 2015 when less than 5% of Okanagan Sockeye that returned to the Columbia River reached spawning grounds. Conclusions Our results indicate that Okanagan Sockeye have exceptional survival and migratory ability relative to other salmonids, though poor ocean conditions combined with warming water temperatures in freshwater habitats in recent years have the potential to devastate the population. The success of reintroduction efforts to increase spatial structure and diversity of Okanagan Sockeye is, therefore, critical to maintaining the population in years to come.



PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256805
Author(s):  
Matthew L. Keefer ◽  
Michael A. Jepson ◽  
Tami S. Clabough ◽  
Christopher C. Caudill

Fishways have been widely used for upstream passage around human-built structures, but ‘success’ has varied dramatically. Evaluation of fishway success has typically been conducted at local scales using metrics such as fish passage efficiency and passage time, but evaluations are increasingly used in broader assessments of whether passage facilities meet population-specific conservation and management objectives. Over 15 years, we monitored passage effectiveness at eight dams on the Columbia and Snake rivers for 26,886 radio-tagged spring-summer and fall Chinook Salmon O. tshwaytscha, Sockeye Salmon O. nerka, and summer steelhead O. mykiss during their migrations to spawning sites. Almost all fish that entered dam tailraces eventually approached and entered fishways. Tailrace-to-forebay passage efficiency estimates at individual dams were consistently high, averaging 0.966 (SD = 0.035) across 245 run×year×dam combinations. These estimates are among the highest recorded for any migratory species, which we attribute to the scale of evaluation, salmonid life history traits (e.g., philopatry), and a sustained adaptive management approach to fishway design, maintenance, and improvement. Full-dam fish passage times were considerably more variable, with run×year×dam medians ranging from 5–65 h. Evaluation at larger scales provided evidence that fishways were biologically effective, e.g., we observed rapid migration rates (medians = 28–40 km/d) through river reaches with multiple dams and estimated fisheries-adjusted upstream migration survival of 67–69%. However, there were substantive uncertainties regarding effectiveness. Uncertainty about natal origins confounded estimation of population-specific survival and interpretation of apparent dam passage ‘failure’, while lack of post-migration reproductive data precluded analyses of delayed or cumulative effects of passing the impounded system on fish fitness. Although the technical fishways are effective for salmonids in the Columbia-Snake River system, other co-migrating species have lower passage rates, highlighting the need for species-specific design and evaluation wherever passage facilities impact fish management and conservation goals.



2021 ◽  
Vol 61 (5) ◽  
pp. 738-751
Author(s):  
K. E. Ho ◽  
S. E. Webb ◽  
C. Angus ◽  
J. Beer ◽  
J. G. Williamson ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hoa Nguyen ◽  
Abraham Ybarra ◽  
Hakan Başağaoğlu ◽  
Orrin Shindell

AbstractWe present a numerical model to simulate the growth and deformation of a viscoelastic biofilm in shear flow under different nutrient conditions. The mechanical interaction between the biofilm and the fluid is computed using the Immersed Boundary Method with viscoelastic parameters determined a priori from measurements reported in the literature. Biofilm growth occurs at the biofilm-fluid interface by a stochastic rule that depends on the local nutrient concentration. We compare the growth, migration, and morphology of viscoelastic biofilms with a common relaxation time of 18 min over the range of elastic moduli 10–1000 Pa in different nearby nutrient source configurations. Simulations with shear flow and an upstream or a downstream nutrient source indicate that soft biofilms grow more if nutrients are downstream and stiff biofilms grow more if nutrients are upstream. Also, soft biofilms migrate faster than stiff biofilms toward a downstream nutrient source, and although stiff biofilms migrate toward an upstream nutrient source, soft biofilms do not. Simulations without nutrients show that on the time scale of several hours, soft biofilms develop irregular structures at the biofilm-fluid interface, but stiff biofilms deform little. Our results agree with the biophysical principle that biofilms can adapt to their mechanical and chemical environment by modulating their viscoelastic properties. We also compare the behavior of a purely elastic biofilm to a viscoelastic biofilm with the same elastic modulus of 50 Pa. We find that the elastic biofilm underestimates growth rates and downstream migration rates if the nutrient source is downstream, and it overestimates growth rates and upstream migration rates if the nutrient source is upstream. Future modeling can use our comparison to identify errors that can occur by simulating biofilms as purely elastic structures.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaiheng Hu ◽  
Chaohua Wu ◽  
Li Wei ◽  
Xiaopeng Zhang ◽  
Qiyuan Zhang ◽  
...  

AbstractLandslide dam outburst floods have a significant impact on landform evolution in high mountainous areas. Historic landslide dams on the Yigong River, southeastern Tibet, generated two outburst superfloods > 105 m3/s in 1902 and 2000 AD. One of the slackwater deposits, which was newly found immediately downstream of the historic dams, has been dated to 7 ka BP. The one-dimensional backwater stepwise method gives an estimate of 225,000 m3/s for the peak flow related to the paleo-stage indicator of 7 ka BP. The recurrence of at least three large landslide dam impoundments and super-outburst floods at the exit of Yigong Lake during the Holocene greatly changed the morphology of the Yigong River. More than 0.26 billion m3 of sediment has been aggraded in the dammed lake while the landslide sediment doubles the channel slope behind the dam. Repeated landslide damming may be a persistent source of outburst floods and impede the upstream migration of river knickpoints in the southeastern margin of Tibet.



Sign in / Sign up

Export Citation Format

Share Document