Amino acid 129 in the coat protein of Cucumber mosaic virus primarily determines invasion of the shoot apical meristem of tobacco plants

2005 ◽  
Vol 71 (4) ◽  
pp. 326-332 ◽  
Author(s):  
Tomofumi Mochizuki ◽  
Satoshi T. Ohki
2009 ◽  
Vol 90 (12) ◽  
pp. 3015-3021 ◽  
Author(s):  
Anurag Sunpapao ◽  
Takashi Nakai ◽  
Fang Dong ◽  
Tomofumi Mochizuki ◽  
Satoshi T. Ohki

It has been reported previously that a 2b protein-defective mutant of the cucumber mosaic virus (CMV) Pepo strain (Δ2b) induces only mild symptoms in systemically infected tobacco plants. To clarify further the role of the 2b protein as an RNA silencing suppressor in mosaic symptom expression during CMV infection, this study monitored the sequential distribution of Δ2b in the shoot meristem and leaf primordia (LP) of inoculated tobacco. Time-course histochemical observations revealed that Δ2b was distributed in the shoot meristem at 7 days post-inoculation (p.i.), but could not invade shoot apical meristem (SAM) and quickly disappeared from the shoot meristem, whereas wild-type (Pepo) transiently appeared in SAM from 4 to 10 days p.i. In LP, Δ2b signals were detected only at 14 and 21 days p.i., whereas dense Pepo signals were observed in LP from 4 to 18 days p.i. Northern blot analysis showed that small interfering RNA (siRNA) derived from Δ2b RNA accumulated earlier in the shoot meristem and LP than that of Pepo. However, a similar amount of siRNA was detected in both Pepo- and Δ2b-infected plants at late time points. Tissue printing analysis of the inoculated leaves indicated that the areas infected by Pepo increased faster than those infected by Δ2b, whereas accumulation of Δ2b in protoplasts was similar to that of Pepo. These findings suggest that the 2b protein of the CMV Pepo strain determines virulence by facilitating the distribution of CMV in the shoot meristem and LP via prevention of RNA silencing and/or acceleration of cell-to-cell movement.


1988 ◽  
Vol 6 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Maria Cuozzo ◽  
Keith M. O'Connell ◽  
Wojciech Kaniewski ◽  
Rong-Xiang Fang ◽  
Nam-Hai Chua ◽  
...  

1998 ◽  
Vol 38 (4) ◽  
pp. 375 ◽  
Author(s):  
Z. Singh ◽  
M. G. K. Jones ◽  
R. A. C. Jones

Summary. Transgenic tobacco (Nicotiana tabacum) plants of (i) cv. Samsun NN containing the cauliflower mosaic virus 35S constitutive promoter linked to a defective replicase (DR) gene derived from cucumber mosaic virus (CMV) subgroup I isolate Fny, and (ii) cv. Xanthi containing the CaMV 35S promoter linked to the coat protein (CP) gene of CMV subgroup I isolate C were tested for resistance to various Australian isolates of CMV. The tobacco plants were challenged with 3 CMV subgroup 1 isolates (BNRR, BMR and B6) using sap inoculation. When used to challenge non-transgenic tobacco plants with 5 subgroup II CMV isolates from lupins (LY, LCH, LAcc, LGu and LD), this inoculation method did not result in systemic infection so graft inoculation was used instead to challenge transgenic plants with these 5 isolates. When plants of the line with the DR gene were challenged with the 3 subgroup I isolates, extreme resistance was revealed as none showed symptoms and CMV was not detectable by ELISA. When the same 3 isolates were inoculated to the 3 lines with the CP gene, resistance was characterised by fewer plants becoming virus infected, delayed systemic movement and, in the plants that were infected, partial remission of symptoms plus somewhat decreased virus concentration. Challenge of transgenic plants with DR or CP with the 5 subgroup II isolates resulted in fewer plants becoming infected. Actual numbers of plants infected varied with line and subgroup II isolate and the DR gene was as effective as the CP gene at decreasing infection. With subgroup II isolate LY, infection was associated with remission of symptoms and with the other 4 isolates with delayed systemic movement. Thus the DR gene approach was more effective than the CP approach in obtaining extreme resistance against Australian subgroup I isolates of CMV. These results suggest that introducing a similar DR gene construct made from a subgroup II isolate from lupins into commercial lupin cultivars may be a suitable strategy for obtaining extreme resistance to subgroup II isolates from lupins.


Sign in / Sign up

Export Citation Format

Share Document