Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains

Gene ◽  
1991 ◽  
Vol 107 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Namba Shigetou ◽  
Ling Kaishu ◽  
Carol Gonsalves ◽  
Dennis Gonsalves ◽  
Jerry L. Slightom
1988 ◽  
Vol 6 (5) ◽  
pp. 549-557 ◽  
Author(s):  
Maria Cuozzo ◽  
Keith M. O'Connell ◽  
Wojciech Kaniewski ◽  
Rong-Xiang Fang ◽  
Nam-Hai Chua ◽  
...  

1998 ◽  
Vol 38 (4) ◽  
pp. 375 ◽  
Author(s):  
Z. Singh ◽  
M. G. K. Jones ◽  
R. A. C. Jones

Summary. Transgenic tobacco (Nicotiana tabacum) plants of (i) cv. Samsun NN containing the cauliflower mosaic virus 35S constitutive promoter linked to a defective replicase (DR) gene derived from cucumber mosaic virus (CMV) subgroup I isolate Fny, and (ii) cv. Xanthi containing the CaMV 35S promoter linked to the coat protein (CP) gene of CMV subgroup I isolate C were tested for resistance to various Australian isolates of CMV. The tobacco plants were challenged with 3 CMV subgroup 1 isolates (BNRR, BMR and B6) using sap inoculation. When used to challenge non-transgenic tobacco plants with 5 subgroup II CMV isolates from lupins (LY, LCH, LAcc, LGu and LD), this inoculation method did not result in systemic infection so graft inoculation was used instead to challenge transgenic plants with these 5 isolates. When plants of the line with the DR gene were challenged with the 3 subgroup I isolates, extreme resistance was revealed as none showed symptoms and CMV was not detectable by ELISA. When the same 3 isolates were inoculated to the 3 lines with the CP gene, resistance was characterised by fewer plants becoming virus infected, delayed systemic movement and, in the plants that were infected, partial remission of symptoms plus somewhat decreased virus concentration. Challenge of transgenic plants with DR or CP with the 5 subgroup II isolates resulted in fewer plants becoming infected. Actual numbers of plants infected varied with line and subgroup II isolate and the DR gene was as effective as the CP gene at decreasing infection. With subgroup II isolate LY, infection was associated with remission of symptoms and with the other 4 isolates with delayed systemic movement. Thus the DR gene approach was more effective than the CP approach in obtaining extreme resistance against Australian subgroup I isolates of CMV. These results suggest that introducing a similar DR gene construct made from a subgroup II isolate from lupins into commercial lupin cultivars may be a suitable strategy for obtaining extreme resistance to subgroup II isolates from lupins.


1998 ◽  
Vol 41 (4) ◽  
pp. 255-261 ◽  
Author(s):  
Ki Hyun Ryu ◽  
Gung Pyo Lee ◽  
Kuen Woo Park ◽  
Se Yong Lee ◽  
Won Mok Park

2006 ◽  
Vol 87 (7) ◽  
pp. 2085-2088 ◽  
Author(s):  
Susana Llamas ◽  
Ignacio M. Moreno ◽  
Fernando García-Arenal

Coat-protein (CP) hybrids between Cucumber mosaic virus (CMV) and Tomato aspermy virus (TAV) were engineered to analyse reported CP-associated differences between these viruses. CP portions delimited by aa 1–59, 60–148 and 149–219 were exchanged in all possible combinations within TAV RNA3. The seven possible chimeras were able to replicate in tobacco protoplasts to similar levels, but only those having residues 1–59 or 60–148 from CMV were infectious to tobacco plants, a common host for CMV and TAV, and formed stable particles. When most of the movement protein (MP) of TAV was substituted for that of CMV, infectivity of CP hybrids did not vary. No hybrid was able to infect cucumber plants, a host for CMV and not for TAV. Need for MP–CP compatibility could explain these results, but shows that MP–CP compatibility conditions the use of CP chimeras to map CP-associated differences between CMV and TAV.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Sign in / Sign up

Export Citation Format

Share Document