scholarly journals There is more than chitin synthase in insect resistance to benzoylureas: molecular markers associated with teflubenzuron resistance in Spodoptera frugiperda

Author(s):  
Antonio Rogério Bezerra do Nascimento ◽  
Vitor Antonio Corrêa Pavinato ◽  
Juliana Gonzales Rodrigues ◽  
Karina Lucas Silva-Brandão ◽  
Fernando Luis Consoli ◽  
...  
2005 ◽  
Vol 35 (11) ◽  
pp. 1249-1259 ◽  
Author(s):  
Renata Bolognesi ◽  
Yasuyuki Arakane ◽  
Subbaratnam Muthukrishnan ◽  
Karl J. Kramer ◽  
Walter R. Terra ◽  
...  

2020 ◽  
Author(s):  
Antonio Rogério Bezerra do Nascimento ◽  
Vitor Antonio Corrêa Pavinato ◽  
Juliana Gonzales Rodrigues ◽  
Karina Lucas Silva-Brandão ◽  
Fernando Luis Consoli ◽  
...  

AbstractChitin synthesis inhibitors are successfully used in pest control and are an excellent option for use in integrated pest management programs due to their low non-target effects. Reports on field-evolved resistance of lepidopteran pests to chitin synthesis inhibitors and the selection of laboratory resistant strains to these products require a detailed investigation on the resistance mechanisms and on the identification of molecular markers to support the implementation of efficient monitoring and resistance management programs. Teflubenzuron is a chitin synthesis inhibitor highly effective in controlling lepidopteran pests, including nowadays the world widely distributed fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae). We report the selection of a laboratory strain of S. frugiperda resistant to teflubenzuron, and its use for the characterization of the inheritance of resistance, evaluation of cross-resistance to other chitin-synthesis inhibitors and the identification of a set of single nucleotide polymorphisms (SNPs) for use as candidate molecular markers for monitoring the evolution of resistance of S. frugiperda to teflubenzuron. The resistance of the selected strain of S. frugiperda to teflubenzuron was characterized as polygenic, autosomal, and incompletely recessive. The resistance ratio observed was nearly 1,365-fold. Teflubenzuron-resistant strain showed some cross-resistance to lufenuron and novaluron but not to chlorfluazuron. We also detected a set of 72 SNPs that could support monitoring of the resistance frequency to teflubenzuron in field populations. Our data contribute to the understanding of the resistance mechanisms and the inheritance of polygenic resistance of S. frugiperda to benzoylureas. We also contribute with candidate markers as tools for monitoring the emergence and spread of teflubenzuron resistance in S. frugiperda.


2015 ◽  
Vol 15 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Prem N. Sharma ◽  
Naoki Mori ◽  
Shigeo Takumi ◽  
Chiharu Nakamura

Rice productivity is greatly affected by various biotic and abiotic stresses. Insect-pests are one of the major bioticconstraints to cause significant losses in rice production. Brown planthopper (BPH), Nilaparvata lugens Stål, isthe most serious insect-pest of rice in Asia where most of the world rice is produced. Controlling insects usingchemicals is already proven detrimental not only to environment but also to human health. Integrated PestManagement (IPM) is the best approach to control insect pests. Host plant resistance is the principal componentof IPM along with biological, cultural and physical methods. Use of varietal resistance is the best option to controlBPH. Many BPH resistant rice varieties with natural BPH resistance have been developed and widely used againstBPH. However, frequent breakdown of monogenic resistance by new BPH biotypes has been a serious threat tocontrol BPH. To overcome such difficulty in the use of monogenic resistance, development of durable resistanceis needed as the sustainable means to control BPH. To develop durable resistance, pyramiding of BPH resistancegenes and quantitative trait loci (QTLs), through marker-assisted method, is needed. For this, many BPH resistancegenes and QTLs have already been identified and mapped on rice chromosomes. This article reviews identification,mapping and pyramiding toward successful cloning of BPH resistance genes/QTLs and provides the basis/guidelines to work on natural insect resistance genes using molecular markers in Nepal.DOI: http://dx.doi.org/10.3126/njst.v15i1.12032Nepal Journal of Science and TechnologyVol. 15, No.1 (2014) 145-156


Sign in / Sign up

Export Citation Format

Share Document