scholarly journals Conventional and Molecular Studies of Brown Planthopper (Nilaparvata lugens Stal) Resistance Genes in Rice: A Basis for Future Study of Natural Insect Resistance Genes Using Molecular Markers in Nepal

2015 ◽  
Vol 15 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Prem N. Sharma ◽  
Naoki Mori ◽  
Shigeo Takumi ◽  
Chiharu Nakamura

Rice productivity is greatly affected by various biotic and abiotic stresses. Insect-pests are one of the major bioticconstraints to cause significant losses in rice production. Brown planthopper (BPH), Nilaparvata lugens Stål, isthe most serious insect-pest of rice in Asia where most of the world rice is produced. Controlling insects usingchemicals is already proven detrimental not only to environment but also to human health. Integrated PestManagement (IPM) is the best approach to control insect pests. Host plant resistance is the principal componentof IPM along with biological, cultural and physical methods. Use of varietal resistance is the best option to controlBPH. Many BPH resistant rice varieties with natural BPH resistance have been developed and widely used againstBPH. However, frequent breakdown of monogenic resistance by new BPH biotypes has been a serious threat tocontrol BPH. To overcome such difficulty in the use of monogenic resistance, development of durable resistanceis needed as the sustainable means to control BPH. To develop durable resistance, pyramiding of BPH resistancegenes and quantitative trait loci (QTLs), through marker-assisted method, is needed. For this, many BPH resistancegenes and QTLs have already been identified and mapped on rice chromosomes. This article reviews identification,mapping and pyramiding toward successful cloning of BPH resistance genes/QTLs and provides the basis/guidelines to work on natural insect resistance genes using molecular markers in Nepal.DOI: http://dx.doi.org/10.3126/njst.v15i1.12032Nepal Journal of Science and TechnologyVol. 15, No.1 (2014) 145-156

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1202
Author(s):  
Bello Sani Haliru ◽  
Mohd Y. Rafii ◽  
Norida Mazlan ◽  
Shairul Izan Ramlee ◽  
Isma’ila Muhammad ◽  
...  

Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.


2016 ◽  
Vol 14 (2) ◽  
pp. 261-269
Author(s):  
Nguyễn Thị Kim Liên ◽  
Nguyễn Huy Hoàng ◽  
Lê Bắc Việt ◽  
Phan Thị Bích Thu ◽  
Nguyễn Huy Chung

Brown plant hopper (Nilaparvata lugens Stal.) is the one of dangerous pests for rice that were reported in most of rice growing countries. Twenty seven BPH resistance genes have been detected in cultivated and wild rice. However, each resistance gene is able to resist with only strain or certain biotype. Besides, many studies indicated that the toxicity of BPH strains tend to change and loss the resistance of rice lines. The breeding of rice varieties that resist to many BPH biotypes is being the breeders towards. With helping of the development of molecular markers and genetic engineering, the breeders are hopping to identify the molecular markers that linked tightly with BPH resistance genes and develop the rice varieties can gather many resistance genes in a well genomic platform. In this study, we assessed the resistance of rice lines of Vietnam and imported rice lines. The resistance was ditermined by using assessement method in the galvanized box and molecular markers linkage with resistance genes (Bph1, bph2, Bph3, Bph9 and Bph17). The results showed that there was a high affinity between the two methods with 70.59% and 86.27% of lines that have the resistance (respectively). Among of 51 surveyed rice lines, 44 lines (86.27%) were determined to have at least one marker linkage with resistance genes. 19 lines (37.25%) harbored two or three markers linkage with resistance genes. These lines will be a good genetic resource for screening and breeding the resistant rice varieties.


2018 ◽  
Vol 38 (7) ◽  
Author(s):  
Lucia Kusumawati ◽  
Pantharika Chumwong ◽  
Watchareewan Jamboonsri ◽  
Samart Wanchana ◽  
Jonaliza L. Siangliw ◽  
...  

1989 ◽  
Vol 79 (2) ◽  
pp. 309-318 ◽  
Author(s):  
D. E. Padgham ◽  
S. Woodhead ◽  
H. R. Rapusas

AbstractThe feeding responses, growth and population development of Nilaparvata lugens (Stål) are quantified on a range of twelve susceptible or resistant host-plants. Paris of rice varieties carrying the Bph1, bph2 and Bph3 resistance genes are compared as hosts for N. lugens, and it is concluded that such notations do not adequately describe the diversity of plant resistance mechanisms. Evidence is presented for resistance mechanisms involving enhanced insect activity and gustatory responses to unacceptable phloem.


2020 ◽  
Author(s):  
Abhishek Ojha ◽  
Wenqing Zhang

AbstractInsect pests consume tastants as their necessary energy and nutrient sources. Gustatory receptors play important roles in insect life and can form within an extremely complicated regulatory network. However, there are still many gustatory genes that have a significant impact on insect physiology, but their functional mechanism is still unknown. Here, we purified and characterized a gustatory receptor (protein) coding gene, NlGr7, from the brown planthopper (BPH) Nilaparvata lugens, which is an important insect pest of rice. Our results revealed that NlGr7 has an active association with various ligands, such as lectins, lipids (phospho- and sphingolipid) and copper. The mass-spectrometry result showed that NlGr7 is a sugar receptor, and NlGr7 is validated by different types of insoluble polysaccharides and a varied range of tastants. Furthermore, we observed that NlGr7-bound ATP hydrolysed on the ATPase activity assay, which indicated that NlGr7 may be associated with important biological functions in the BPH. The important NlGr7 for chemoreception has now been characterized in the BPH. We showed that NlGr7 in the BPH is required for various protein-ligands, as well as protein-sugars interactions, to play crucial roles in this pest. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 498
Author(s):  
Cuong D. Nguyen ◽  
Holden Verdeprado ◽  
Demeter Zita ◽  
Sachiyo Sanada-Morimura ◽  
Masaya Matsumura ◽  
...  

The brown planthopper (BPH: Nilaparvata lugens Stål.) is a major pest of rice, Oryza sativa, in Asia. Host plant resistance has tremendous potential to reduce the damage caused to rice by the planthopper. However, the effectiveness of resistance genes varies spatially and temporally according to BPH virulence. Understanding patterns in BPH virulence against resistance genes is necessary to efficiently and sustainably deploy resistant rice varieties. To survey BPH virulence patterns, seven near-isogenic lines (NILs), each with a single BPH resistance gene (BPH2-NIL, BPH3-NIL, BPH17-NIL, BPH20-NIL, BPH21-NIL, BPH32-NIL and BPH17-ptb-NIL) and fifteen pyramided lines (PYLs) carrying multiple resistance genes were developed with the genetic background of the japonica rice variety, Taichung 65 (T65), and assessed for resistance levels against two BPH populations (Hadano-66 and Koshi-2013 collected in Japan in 1966 and 2013, respectively). Many of the NILs and PYLs were resistant against the Hadano-66 population but were less effective against the Koshi-2013 population. Among PYLs, BPH20+BPH32-PYL and BPH2+BPH3+BPH17-PYL granted relatively high BPH resistance against Koshi-2013. The NILs and PYLs developed in this research will be useful to monitor BPH virulence prior to deploying resistant rice varieties and improve rice’s resistance to BPH in the context of regionally increasing levels of virulence.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Li ◽  
Boon Huat Cheah ◽  
Yu-Fu Fang ◽  
Yun-Hung Kuang ◽  
Shau-Ching Lin ◽  
...  

Abstract Background Outbreaks of insect pests in paddy fields cause heavy losses in global rice yield annually, a threat projected to be aggravated by ongoing climate warming. Although significant progress has been made in the screening and cloning of insect resistance genes in rice germplasm and their introgression into modern cultivars, improved rice resistance is only effective against either chewing or phloem-feeding insects. Results In this study, the results from standard and modified seedbox screening, settlement preference and honeydew excretion tests consistently showed that Qingliu, a previously known leaffolder-resistant rice variety, is also moderately resistant to brown planthopper (BPH). High-throughput RNA sequencing showed a higher number of differentially expressed genes (DEGs) at the infestation site, with 2720 DEGs in leaves vs 181 DEGs in sheaths for leaffolder herbivory and 450 DEGs in sheaths vs 212 DEGs in leaves for BPH infestation. The leaf-specific transcriptome revealed that Qingliu responds to leaffolder feeding by activating jasmonic acid biosynthesis genes and genes regulating the shikimate and phenylpropanoid pathways that are essential for the biosynthesis of salicylic acid, melatonin, flavonoids and lignin defensive compounds. The sheath-specific transcriptome revealed that Qingliu responds to BPH infestation by inducing salicylic acid-responsive genes and those controlling cellular signaling cascades. Taken together these genes could play a role in triggering defense mechanisms such as cell wall modifications and cuticular wax formation. Conclusions This study highlighted the key defensive responses of a rarely observed rice variety Qingliu that has resistance to attacks by two different feeding guilds of herbivores. The leaffolders are leaf-feeder while the BPHs are phloem feeders, consequently Qingliu is considered to have dual resistance. Although the defense responses of Qingliu to both insect pest types appear largely dissimilar, the phenylpropanoid pathway (or more specifically phenylalanine ammonia-lyase genes) could be a convergent upstream pathway. However, this possibility requires further studies. This information is valuable for breeding programs aiming to generate broad spectrum insect resistance in rice cultivars.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Tri A. Mokodompit ◽  
Roni Koneri ◽  
Parluhutan Siahaan ◽  
Agustina M Tangapo

AbstrakWereng Batang Coklat (WBC) (Nilaparvata lugens Stal.) merupakan serangga hama yang dapat merusak tanaman padi (Oryza sativa L.). Tanaman kipait (Tithonia diversifolia) berpotensi sebagai insektisida nabati karena memiliki senyawa toksik terhadap serangga. Penelitian ini bertujuan untuk mengkaji aktifitas makan akibat pemberian ekstrak daun kipait. Konsentrasi ekstrak daun kipait yang digunakan adalah 0% (kontrol), 1%, 3%,5% dan 7% dalam RAL (Rancangan Acak Lengkap) dengan 5 kali ulangan. Hasil penelitian menunjukkan bahwa pemberian ekstrak daun kipait berpengaruh terhadap penghambatan daya makan WBC. Penghambatan makan tertinggi terjadi pada konsentrasi 7% setelah 24 jam.Kata kunci : penghambatan daya makan, Nilaparvata lugens Stal., Tithonia diversifoliaAbstractBrown planthopper (BPH) (Nilaparvata lugens Stal.) Is an insect pest that can damage rice plants (Oryza sativa L.). Kipait (Tithonia diversifolia) is potential as a bioinsecticide because it is toxic to insects. This study aimed to evaluate the feeding activity that was influenced by kipait leaf extract. The concentration of kipait leaf extract were 0% (control), 1%, 3%, 5% and 7%. The experiment design was CRD (completely randomized design) with 5 replications. The results showed that the kipait leaf extract influenced the feeding inhibition of BHP. The highest inhibition occurred in the concentration of 7% after 24 hours treatment.Keywords : brown planthopper, feeding inhibition, Tithonia diversifolia


Sign in / Sign up

Export Citation Format

Share Document