Overwintering, cold tolerance and supercooling capacity comparison between Liriomyza sativae and L. trifolii, two invasive leafminers in China

Author(s):  
Qikai Zhang ◽  
Shengyong Wu ◽  
Haihong Wang ◽  
Zhenlong Xing ◽  
Zhongren Lei
2021 ◽  
Author(s):  
Qikai Zhang ◽  
Shengyong Wu ◽  
Haihong Wang ◽  
Zhonglong Xing ◽  
Zhongren Lei

Abstract Liriomyza sativae Blanchard and Liriomyza trifolii (Burgess) are two highly polyphagous pests that successively invaded China in the 1990s and 2000s, respectively, threatening vegetable and horticultural plants. Competitive displacement of L. sativae by L. trifolii occurred during the expansion process of the latter in southern China. However, whether L. trifolii can expand their range to northern China and, if so, how they compete with L. sativae in northern China remains unclear. Overwintering and cold tolerance capacity largely determine the species distribution range and can affect species displacement through overwintering and phenology. In this study, we compared the overwintering potential, cold tolerance and supercooling point (SCP) between these two leafminer species. Our results showed that L. trifolii can overwinter at higher altitudes than L. sativae. In addition, we found that they can both successfully overwinter in greenhouses in northern China, and the overwintering capacity of L. trifolii was higher than that of L. sativae. Moreover, the extreme low-temperature survival of L. trifolii was significantly higher than that of L. sativae, and the SCP of the former was lower than that of the latter. We thus conclude that the overwintering and cold tolerance capacity of L. trifolii is much better than that of L. sativae. Our findings indicate that L. trifolii has the potential to displace L. sativae and expand its range to northern China. Moreover, our results have important implications for predicting overwinter ranges and developing management strategies for invasive leafminers in China.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1041
Author(s):  
Junaid Iqbal ◽  
Xiao-Xiang Zhang ◽  
Ya-Wen Chang ◽  
Yu-Zhou Du

Rapid cold hardening (RCH) is a rapid and critical adaption of insects to sudden temperature changes but is often overlooked or underestimated as a component of survival. Thus, interspecific comparisons of RCH are needed to predict how phenotypes will adapt to temperature variability. RCH not only enhances cold survival but also protects against non-lethal cold injury by preserving essential functions such as locomotion, reproduction, and energy balance. This study investigated the difference in basal cold tolerance and RCH capacity of L. trifolii and L. sativae. In both species, the cold tolerance of pupae was significantly enhanced after short-term exposure to moderately cold temperatures. The effect of RCH last for 4 h in L. sativae but only 2 h in L. trifolii. Interestingly, L. trifolii adults had a RCH response but L. sativae adults failed to acclimate. Short-term acclimation also lowered the supercooling point significantly in the pupae of both species. Based on these results, we propose a hypothesis that these differences will eventually affect their competition in the context of climate change. This study also provides the basis for future metabolomic and transcriptomic studies that may ultimately uncover the underlying mechanisms of RCH and interspecific competition between L. trifolii and L. sativae.


2005 ◽  
Vol 33 (2-3) ◽  
pp. 525-531 ◽  
Author(s):  
Gul Zaffar ◽  
Asif Shikari ◽  
M. Rather ◽  
S. Guleria

2011 ◽  
Vol 46 (1) ◽  
pp. 21-27
Author(s):  
Jian Shuirong ◽  
Wan Yong ◽  
Luo Xiangdong ◽  
Fang Jun ◽  
Chu Chengcai ◽  
...  

Crop Science ◽  
1986 ◽  
Vol 26 (4) ◽  
pp. 676-680 ◽  
Author(s):  
D. W. Unander ◽  
J. H. Orf ◽  
J. W. Lambert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document