scholarly journals Overwintering, Cold Tolerance and Supercooling Capacity Comparison Between Liriomyza Sativae and L. Trifolii, Two Successively Invaded Leafminers in China

Author(s):  
Qikai Zhang ◽  
Shengyong Wu ◽  
Haihong Wang ◽  
Zhonglong Xing ◽  
Zhongren Lei

Abstract Liriomyza sativae Blanchard and Liriomyza trifolii (Burgess) are two highly polyphagous pests that successively invaded China in the 1990s and 2000s, respectively, threatening vegetable and horticultural plants. Competitive displacement of L. sativae by L. trifolii occurred during the expansion process of the latter in southern China. However, whether L. trifolii can expand their range to northern China and, if so, how they compete with L. sativae in northern China remains unclear. Overwintering and cold tolerance capacity largely determine the species distribution range and can affect species displacement through overwintering and phenology. In this study, we compared the overwintering potential, cold tolerance and supercooling point (SCP) between these two leafminer species. Our results showed that L. trifolii can overwinter at higher altitudes than L. sativae. In addition, we found that they can both successfully overwinter in greenhouses in northern China, and the overwintering capacity of L. trifolii was higher than that of L. sativae. Moreover, the extreme low-temperature survival of L. trifolii was significantly higher than that of L. sativae, and the SCP of the former was lower than that of the latter. We thus conclude that the overwintering and cold tolerance capacity of L. trifolii is much better than that of L. sativae. Our findings indicate that L. trifolii has the potential to displace L. sativae and expand its range to northern China. Moreover, our results have important implications for predicting overwinter ranges and developing management strategies for invasive leafminers in China.

2005 ◽  
Vol 36 (2) ◽  
pp. 175-192 ◽  
Author(s):  
Caihong Hu ◽  
Shenglian Guo ◽  
Lihua Xiong ◽  
Dingzhi Peng

The Xinanjiang model has been widely used in the humid regions in southern China as a basic tool for rainfall–runoff simulation, flood forecasting and water resources planning and management. However, its performance in the arid and semi-arid regions of northern China is usually not so good as in the humid regions. A modified Xinanjiang model, in which runoff generation in the watershed is based on both infiltration excess and saturation excess runoff mechanisms, is presented and discussed. Three different watersheds are selected for assessing and comparing the performance of the Xinanjiang model, the modified Xinanjiang model, the VIC model and the TOPMODEL in rainfall–runoff simulation. It is found that the modified Xinanjiang model performs better than the Xinanjiang model, and the models considering the Horton and Dunne runoff generation mechanisms are slightly better than those models considering the single runoff generation mechanism in semi-arid areas. It is suggested that the infiltration excess runoff mechanism should be included in rainfall–runoff models in arid and semi-arid regions.


2019 ◽  
Vol 20 (9) ◽  
pp. 1867-1885 ◽  
Author(s):  
Ziqian Zhong ◽  
Bin He ◽  
Lanlan Guo ◽  
Yafeng Zhang

Abstract A topic of ongoing debate on the application of PDSI is whether to use the original version of the PDSI or a self-calibrating form, as well as which method to use for calculating potential evapotranspiration (PET). In this study, the performances of four forms of the PDSI, including the original PDSI based on the Penman–Monteith method for calculating PET (ETp), the PDSI based on the crop reference evapotranspiration method for calculating PET (ET0), the self-calibrating PDSI (scPDSI) based on ETp, and the scPDSI based on ET0, were evaluated in China using the normalized difference vegetation index (NDVI), modeled soil moisture anomalies (SMA), and the terrestrial water storage deficit index (WSDI). The interannual variations of all forms of PDSI agreed well with each other and presented a weak increasing trend, suggesting a climate wetting in China from 1961 to 2013. PDSI-ET0 correlated more closely with NDVI anomalies, SMA, and WSDI than did PDSI-ETp in northern China, especially in northeastern China, while PDSI-ETp correlated more closely with SMA and WSDI in southern China. PDSI-ET0 performed better than PDSI-ETp in regions where the annual average rainfall is between 350 and 750 mm yr−1. The spatial comparability of scPDSI was better than that of PDSI, while the PDSI correlated more closely with NDVI anomalies, SMA, and WSDI than did scPDSI in most regions of China. Knowledge from this study provides important information for the choice of PDSI forms when it is applied for different practices.


2021 ◽  
pp. 1-14
Author(s):  
Qin Li ◽  
Haibin Wu ◽  
Jun Cheng ◽  
Shuya Zhu ◽  
Chunxia Zhang ◽  
...  

Abstract The East Asian winter monsoon (EAWM) is one of the most dynamic components of the global climate system. Although poorly understood, knowledge of long-term spatial differences in EAWM variability during the glacial–interglacial cycles is important for understanding the dynamic processes of the EAWM. We reconstructed the spatiotemporal characteristics of the EAWM since the last glacial maximum (LGM) using a comparison of proxy records and long-term transient simulations. A loess grain-size record from northern China (a sensitive EAWM proxy) and the sea surface temperature gradient of an EAWM index in sediments of the southern South China Sea were compared. The data–model comparison indicates pronounced spatial differences in EAWM evolution, with a weakened EAWM since the LGM in northern China but a strengthened EAWM from the LGM to the early Holocene, followed by a weakening trend, in southern China. The model results suggest that variations in the EAWM in northern China were driven mainly by changes in atmospheric carbon dioxide (CO2) concentration and Northern Hemisphere ice sheets, whereas orbital insolation and ice sheets were important drivers in southern China. We propose that the relative importance of insolation, ice sheets, and atmospheric CO2 for EAWM evolution varied spatially within East Asia.


2021 ◽  
pp. bjophthalmol-2021-319343
Author(s):  
Peizeng Yang ◽  
Wanyun Zhang ◽  
Zhijun Chen ◽  
Han Zhang ◽  
Guannan Su ◽  
...  

Background/aimsFuchs’ uveitis syndrome (FUS) is one of the frequently misdiagnosed uveitis entities, which is partly due to the absence of internationally recognised diagnostic criteria. This study was performed to develop and evaluate a set of revised diagnostic criteria for FUS.MethodsThe clinical data of Chinese patients with FUS and patients with non-FUS were collected and analysed from a tertiary referral centre between April 2008 and December 2020. A total of 593 patients with FUS and 625 patients with non-FUS from northern China were enrolled for the development of diagnostic criteria for FUS. Three hundred and seventy-seven patients with FUS and 503 patients with non-FUS from southern China were used to validate the criteria. Clinical symptoms and ocular signs were collected from all patients with FUS and patients with non-FUS. Multivariate two-step cluster analysis, logistic regression and decision tree algorithms in combination with the clinical judgement of uveitis experts were used to revise diagnostic criteria for FUS.ResultsThree essential findings including diffuse iris depigmentation, absence of posterior synechiae, mild inflammation in the anterior chamber at presentation and five associated findings including mostly unilateral involvement, cataract, vitreous opacities, absence of acute symptoms and characteristic iris nodules were used in the development of FUS diagnostic criteria. All essential findings were required for the diagnosis of FUS, and the diagnosis was further strengthened by the presence of associated findings.ConclusionRevised diagnostic criteria for FUS were developed and validated by analysing data from Chinese patients and showed a high sensitivity (96.55%) and specificity (97.42%).


2010 ◽  
Vol 4 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Anning Suo ◽  
Dongzhi Zhao ◽  
Fengshou Zhang ◽  
Huaru Wang ◽  
Fengqiao Liu

2021 ◽  
Author(s):  
Xiaohui Guo ◽  
Shijing Zhang ◽  
Ting Yan ◽  
Guoqiang Yuan ◽  
Yafeng Dai ◽  
...  

Abstract Background: Dendrobium officinale Kimura et Migo is a traditional functional food and medicinal plant in China. Due to low natural regeneration rates, habitat destruction, excessive collection and commercial trade, D. officinale is severely threatened, and commercial artificial-sheltered cultivation has been massively used to meet the needs of the market. Aim: To comprehensively compare the accumulation of nutritional compounds during 3-5 years of introduced, artificial-sheltered cultivation from southern to northern China.Methods: D. officinale of the same species were artificially cultivated in the southern traditional cultivation area, Anhui and the new northern cultivation area, Beijing. First, samples were collected in the third, fourth, and fifth years of growth, and nutritional quality indexes, including polysaccharides, alkaloids, flavonoids and total phenolic content, were determined. Second, an untargeted metabolomics method was used to investigate metabolic variations in D. officinale stems between Anhui and Beijing cultures in the fifth year.Results: After comparing the nutrient accumulation in different growing years, the idea harvest time was found in the third growing year in both cultivation areas. Of them, the contents of polysaccharides, flavonoids and total polyphenol were higher in cultivation in Anhui than Beijing, but the accumulation of alkaloid content was much lower in Anhui. The highest amount of polysaccharides of Dendrobium officinale was found in the three-year cultivation in Anhui, which reached 515.75 mg/g. When metabolites were analysed, a total of 272 metabolites were detected in the current study, including 27 up-regulated and 73 down-regulated metabolites in D. officinale cultivated in Beijing compared with samples from Anhui. Conclusion: D. officinale artificially and transplanted cultivated from southern to northern China showed some significant differences in the accumulation of nutrient compounds. Planting in northern China has some specific advantages, but the overall nutritional value is not as good as planting in southern China. Our study contributes to a better understanding of the nutrient profiles of D. officinale through artificial cultivation in different areas.


2016 ◽  
Author(s):  
Yu Hao Mao ◽  
Hong Liao

Abstract. We applied a global three-dimensional chemical transport model (GEOS-Chem) to examine the impacts of the East Asian monsoon on the interannual variations of mass concentrations and direct radiative forcing (DRF) of black carbon (BC) over eastern China (110–125° E, 20–45° N). With emissions fixed at the year 2010 levels, model simulations were driven by the Goddard Earth Observing System (GEOS-4) meteorological fields for 1986–2006 and the Modern Era Retrospective-analysis for Research and Applications (MERRA) meteorological fields for 1980–2010. During the period of 1986–2006, simulated JJA and DJF surface BC concentrations were higher in MERRA than in GEOS-4 by 0.30 µg m−3 (44 %) and 0.77 µg m−3 (54 %), respectively, because of the generally weaker precipitation in MERRA. We found that the strength of the East Asian summer monsoon (EASM, (East Asian winter monsoon, EAWM)) negatively correlated with simulated JJA (DJF) surface BC concentrations (r = –0.7 (–0.7) in GEOS-4 and –0.4 (–0.7) in MERRA), mainly by the changes in atmospheric circulation. Relative to the five strongest EASM years, simulated JJA surface BC concentrations in the five weakest monsoon years were higher over northern China (110–125° E, 28–45° N) by 0.04–0.09 µg m−3 (3–11 %), but lower over southern China (110–125° E, 20–27° N) by 0.03–0.04 µg m−3 (10–11 %). Compared to the five strongest EAWM years, simulated DJF surface BC concentrations in the five weakest monsoon years were higher by 0.13–0.15 µg m−3 (5–8 %) in northern China and by 0.04–0.10 µg m−3 (3–12 %) in southern China. The resulting JJA (DJF) mean all-sky DRF of BC at the top of the atmosphere were 0.04 W m−2 (3 %, (0.03 W m−2, 2 %)) higher in northern China but 0.06 W m−2 (14 %, (0.03 W m−2, 3 %)) lower in southern China. In the weakest monsoon years, the weaker vertical convection led to the lower BC concentrations above 1–2 km in southern China, and therefore the lower BC DRF in the region. The differences in vertical profiles of BC between the weakest and strongest EASM years (1998–1997) and EAWM years (1990–1996) reached up to –0.09 µg m−3 (–46 %) and –0.08 µg m−3 (–11 %) at 1–2 km in eastern China.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 144 ◽  
Author(s):  
Tomáš Ditrich ◽  
Václav Janda ◽  
Hana Vaněčková ◽  
David Doležel

Cold tolerance is often one of the key components of insect fitness, but the association between climatic conditions and supercooling capacity is poorly understood. We tested 16 lines originating from geographically different populations of the linden bug Pyrrhocoris apterus for their cold tolerance, determined as the supercooling point (SCP). The supercooling point was generally well explained by the climatic conditions of the population’s origin, as the best predictor—winter minimum temperature—explained 85% of the average SCP variation between populations. The supercooling capacity of P. apterus is strongly correlated with climatic conditions, which support the usage of SCP as an appropriate metric of cold tolerance in this species.


Sign in / Sign up

Export Citation Format

Share Document