interspecific comparisons
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 23)

H-INDEX

27
(FIVE YEARS 3)

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1041
Author(s):  
Junaid Iqbal ◽  
Xiao-Xiang Zhang ◽  
Ya-Wen Chang ◽  
Yu-Zhou Du

Rapid cold hardening (RCH) is a rapid and critical adaption of insects to sudden temperature changes but is often overlooked or underestimated as a component of survival. Thus, interspecific comparisons of RCH are needed to predict how phenotypes will adapt to temperature variability. RCH not only enhances cold survival but also protects against non-lethal cold injury by preserving essential functions such as locomotion, reproduction, and energy balance. This study investigated the difference in basal cold tolerance and RCH capacity of L. trifolii and L. sativae. In both species, the cold tolerance of pupae was significantly enhanced after short-term exposure to moderately cold temperatures. The effect of RCH last for 4 h in L. sativae but only 2 h in L. trifolii. Interestingly, L. trifolii adults had a RCH response but L. sativae adults failed to acclimate. Short-term acclimation also lowered the supercooling point significantly in the pupae of both species. Based on these results, we propose a hypothesis that these differences will eventually affect their competition in the context of climate change. This study also provides the basis for future metabolomic and transcriptomic studies that may ultimately uncover the underlying mechanisms of RCH and interspecific competition between L. trifolii and L. sativae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Liam P. McGuire ◽  
Nathan W. Fuller ◽  
Yvonne A. Dzal ◽  
Catherine G. Haase ◽  
Brandon J. Klüg-Baerwald ◽  
...  

AbstractHibernation is widespread among mammals in a variety of environmental contexts. However, few experimental studies consider interspecific comparisons, which may provide insight into general patterns of hibernation strategies. We studied 13 species of free-living bats, including populations spread over thousands of kilometers and diverse habitats. We measured torpid metabolic rate (TMR) and evaporative water loss (two key parameters for understanding hibernation energetics) across a range of temperatures. There was no difference in minimum TMR among species (i.e., all species achieved similarly low torpid metabolic rate) but the temperature associated with minimum TMR varied among species. The minimum defended temperature (temperature below which TMR increased) varied from 8 °C to < 2 °C among species. Conversely, evaporative water loss varied among species, with species clustered in two groups representing high and low evaporative water loss. Notably, species that have suffered population declines due to white-nose syndrome fall in the high evaporative water loss group and less affected species in the low evaporative water loss group. Documenting general patterns of physiological diversity, and associated ecological implications, contributes to broader understanding of biodiversity, and may help predict which species are at greater risk of environmental and anthropogenic stressors.


2021 ◽  
Author(s):  
A. V. Stolyarova ◽  
T. V. Neretina ◽  
E. A. Zvyagina ◽  
A. V. Fedotova ◽  
A. S. Kondrashov ◽  
...  

AbstractIt is natural to assume that patterns of genetic variation in hyperpolymorphic species can reveal large-scale properties of the fitness landscape that are hard to detect by studying species with ordinary levels of genetic variation1,2. Here, we study such patterns in a fungus Schizophyllum commune, the most polymorphic species known3. Throughout the genome, short-range linkage disequilibrium caused by attraction of rare alleles is higher between pairs of nonsynonymous than of synonymous sites. This effect is especially pronounced for pairs of sites that are located within the same gene, especially if a large fraction of the gene is covered by haploblocks, genome segments where the gene pool consists of two highly divergent haplotypes, which is a signature of balancing selection. Haploblocks are usually shorter than 1000 nucleotides, and collectively cover about 10% of the S. commune genome. LD tends to be substantially higher for pairs of nonsynonymous sites encoding amino acids that interact within the protein. There is a substantial correlation between LDs at the same pairs of nonsynonymous sites in the USA and the Russian populations. These patterns indicate that selection in S. commune involves positive epistasis due to compensatory interactions between nonsynonymous alleles. When less polymorphic species are studied, analogous patterns can be detected only through interspecific comparisons.


2021 ◽  
Author(s):  
Nicolas Alcala ◽  
Noah A Rosenberg

Interpretations of values of the FST measure of genetic differentiation rely on an understanding of its mathematical constraints. Previously, it has been shown that FST values computed from a biallelic locus in a set of multiple populations and FST values computed from a multiallelic locus in a pair of populations are mathematically constrained by the frequency of the allele that is most frequent across populations. We report here the mathematical constraint on FST given the frequency M of the most frequent allele at a multiallelic locus in a set of multiple populations, providing the most general description to date of mathematical constraints on FST in terms of M. Using coalescent simulations of an island model of migration with an infinitely-many-alleles mutation model, we argue that the joint distribution of FST and M helps in disentangling the separate influences of mutation and migration on FST. Finally, we show that our results explain puzzling patterns of microsatellite differentiation, such as the lower FST values in interspecific comparisons between humans and chimpanzees than in the intraspecific comparison of chimpanzee populations. We discuss the implications of our results for the use of FST.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254263
Author(s):  
Martin Horstmann ◽  
Ralph Tollrian ◽  
Linda C. Weiss

Predation is a major selective agent, so that many taxa evolved phenotypically plastic defensive mechanisms. Among them are many species of the microcrustacean genus Daphnia, which respond to an increased predation risk by developing inducible morphological alterations. Some of these features are obvious and easily recognized, e.g., crests in D. longicephala, while others are rather hidden, such as the bulkier shape of D. magna induced by the presence of the tadpole shrimp Triops. In this study we investigated the extraordinary diversity of morphological adaptations in the presence of predators with different foraging strategies in six predator-prey systems. For the first time we were able to analyze the unexposed and predator-exposed morphs comprehensively using three-dimensional scanning and reconstruction. We show that morphological changes are manifold in appearance between species and predators, and go beyond what has been known from previous 2D analyses. This further demonstrates the enormous trait flexibility of Daphnia. Interestingly, we found that among this variety some species share morphological strategies to counter a predator, while others use a different strategy against the same predator. Based on these intra- and interspecific comparisons, we discuss the mechanisms by which the respective defense might operate. These data therefore contribute to a deeper understanding of the inducible defenses’ morphology as well as their diversified modes of operation in Daphnia, being a cornerstone for subsequent investigations, including the determination of costs associated with morphological change.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251919
Author(s):  
Rosannette Quesada-Hidalgo ◽  
William G. Eberhard ◽  
Gilbert Barrantes

The brains of smaller animals are smaller than those of their larger relatives, but it is not clear whether their adaptive behavioral flexibility is more limited. Previous interspecific comparisons found that aspects of web construction behavior of very small orb weaving spiders (0.005 mg) were no less precise than those of much larger related orb weavers (30 mg), but the behaviors tested were relatively simple. Here we perform a more sensitive intraspecific test involving the multiple behavioral adjustments of orb web designs made by Leucauge argyra to confinement in very small spaces. Web adjustments of spiderlings as small as ~0.1 mg were compared to previously published observations of ~80 mg conspecific adults. Spiderlings in constrained spaces made all of the complex adjustments made by adults in at least seven independent web design variables, and their adjustments were no less precise. Rough estimates based on previously published data on total brain volumes and the mean diameters of neuron cell bodies suggested that spiderlings and adult females of Leucauge may have similar numbers of neurons, due to spiderlings having smaller neurons and a greater percentage of body tissues dedicated to the brain. We speculate that this neural similarity may explain why L. argyra spiderlings showed no behavioral deficits compared with adults.


2021 ◽  
Author(s):  
Natali Orekhova ◽  
Yu A. Davydova ◽  
G. Yu. Smirnov

Abstract Among the representatives of the subfamily Arvicolinae the interspecific differences (Clethrionomys glareolus, Clethrionomys rutilus, and Craseomys rufocanus) in the respiratory capacity of red blood and the immune status are presented in conjunction with the basal metabolic rate, the level of sociality and eurybionism, and thermoregulatory function. The degree of differentiation of voles in terms of haematological parameters has corresponded to the level of phylogenetic relationships between species. Correct conduct of interspecific comparisons of haematological parameters of voles is possible only within the same reproductive-age groups.


2021 ◽  
Vol 224 (3) ◽  
pp. jeb141309
Author(s):  
Danielle L. Levesque ◽  
Katie E. Marshall

ABSTRACTTemperature is an important environmental factor governing the ability of organisms to grow, survive and reproduce. Thermal performance curves (TPCs), with some caveats, are useful for charting the relationship between body temperature and some measure of performance in ectotherms, and provide a standardized set of characteristics for interspecific comparisons. Endotherms, however, have a more complicated relationship with environmental temperature, as endothermy leads to a decoupling of body temperature from external temperature through use of metabolic heat production, large changes in insulation and variable rates of evaporative heat loss. This has impeded our ability to model endothermic performance in relation to environmental temperature as well as to readily compare performance between species. In this Commentary, we compare the strengths and weaknesses of potential TPC analogues (including other useful proxies for linking performance to temperature) in endotherms and suggest several ways forward in the comparative ecophysiology of endotherms. Our goal is to provide a common language with which ecologists and physiologists can evaluate the effects of temperature on performance. Key directions for improving our understanding of endotherm thermoregulatory physiology include a comparative approach to the study of the level and precision of body temperature, measuring performance directly over a range of body temperatures and building comprehensive mechanistic models of endotherm responses to environmental temperatures. We believe the answer to the question posed in the title could be ‘yes’, but only if ‘performance’ is well defined and understood in relation to body temperature variation, and the costs and benefits of endothermy are specifically modelled.


Author(s):  
William J. Murphy ◽  
Nicole M. Foley ◽  
Kevin R. Bredemeyer ◽  
John Gatesy ◽  
Mark S. Springer

The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole-genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document