Genetic variation analysis and comprehensive evaluation of wood property traits of 20-year-old Chinese fir clone

Author(s):  
Demiao Chu ◽  
Tao Yao ◽  
Liang Zhou ◽  
Hanwei Yan ◽  
Min Yu ◽  
...  
2013 ◽  
Vol 38 (5) ◽  
pp. 530-534
Author(s):  
Hong-wei WANG ◽  
Liu-chen ZHANG ◽  
Yun-fei PU ◽  
Ji-mei HUANG ◽  
Bin WANG

Author(s):  
Rui Zang ◽  
Ying Zhao ◽  
Kangdi Guo ◽  
Kunqi Hong ◽  
Huijun Xi ◽  
...  

AbstractBitter gourd wilt caused by Fusarium oxysporum f. sp. momordicae (FOM) is a devastating crop disease in China. A total of 173 isolates characteristic of typical Fusarium oxysporum with abundant microconidia and macroconidia on white or ruby colonies were obtained from diseased plant tissues. BLASTn analysis of the rDNA-ITS of the isolates showed 99% identity with F. oxysporum species. Among the tested isolates, three were infectious toward tower gourd and five were pathogenic to bottle gourd. However, all of the isolates were pathogenic to bitter gourd. For genetic differences analysis, 40 ISSR primers were screened and 11 primers were used for ISSR-PCR amplification. In total, 127 loci were detected, of which 76 were polymorphic at a rate of 59.84%. POPGENE analysis showed that Nei’s gene diversity index (H) and Shannon’s information index (I) were 0.09 and 0.15, respectively, which indicated that the genetic diversity of the 173 isolates was low. The coefficient of gene differentiation (Gst = 0.33 > 0.15) indicated that genetic differentiation was mainly among populations. The strength of gene flow (Nm = 1.01 > 1.0) was weak, indicating that the population differentiation caused by gene drift was blocked to some degree. The dendrogram based on ISSR markers showed that the nine geographical populations were clustered into two groups at the threshold of genetic similarity coefficient of 0.96. The Shandong and Henan populations were clustered into Group I, while the Guangdong, Hainan, Guangxi, Fujian, Jiangxi, and Hubei populations constituted Group II. Results of the genetic variation analysis showed that the Hunan and Guangxi populations had the highest degree of genetic differentiation, while the Hubei population had the lowest genetic differentiation. Our findings enrich the knowledge of the genetic variation characteristics of FOM populations with the goal of developing effective disease-management programs and resistance breeding programs.


2012 ◽  
Vol 11 (3) ◽  
pp. 361-363
Author(s):  
Tian-Fei Yu ◽  
Ming Li ◽  
Shu-Li Shao ◽  
Jian-Wei Lv ◽  
Xing-Jun Xu ◽  
...  

2021 ◽  
Author(s):  
Brice Letcher ◽  
Martin Hunt ◽  
Zamin Iqbal

AbstractBackgroundStandard approaches to characterising genetic variation revolve around mapping reads to a reference genome and describing variants in terms of differences from the reference; this is based on the assumption that these differences will be small and provides a simple coordinate system. However this fails, and the coordinates break down, when there are diverged haplotypes at a locus (e.g. one haplotype contains a multi-kilobase deletion, a second contains a few SNPs, and a third is highly diverged with hundreds of SNPs). To handle these, we need to model genetic variation that occurs at different length-scales (SNPs to large structural variants) and that occurs on alternate backgrounds. We refer to these together as multiscale variation.ResultsWe model the genome as a directed acyclic graph consisting of successive hierarchical subgraphs (“sites”) that naturally incorporate multiscale variation, and introduce an algorithm for genotyping, implemented in the software gramtools. This enables variant calling on different sequence backgrounds. In addition to producing regular VCF files, we introduce a JSON file format based on VCF, which records variant site relationships and alternate sequence backgrounds.We show two applications. First, we benchmark gramtools against existing state-of-the-art methods in joint-genotyping 17 M. tuberculosis samples at long deletions and the overlapping small variants that segregate in a cohort of 1,017 genomes. Second, in 706 African and SE Asian P. falciparum genomes, we analyse a dimorphic surface antigen gene which possesses variation on two diverged backgrounds which appeared to not recombine. This generates the first map of variation on both backgrounds, revealing patterns of recombination that were previously unknown.ConclusionsWe need new approaches to be able to jointly analyse SNP and structural variation in cohorts, and even more to handle variants on different genetic backgrounds. We have demonstrated that by modelling with a directed, acyclic and locally hierarchical genome graph, we can apply new algorithms to accurately genotype dense variation at multiple scales. We also propose a generalisation of VCF for accessing multiscale variation in genome graphs, which we hope will be of wide utility.


2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Liang Cao ◽  
Wenchao Sun ◽  
Huijun Lu ◽  
Mingyao Tian ◽  
Changzhan Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document